These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7848263)

  • 1. Methional derived from 4-methylthio-2-oxobutanoate is a cellular mediator of apoptosis in BAF3 lymphoid cells.
    Quash G; Roch AM; Chantepie J; Michal Y; Fournet G; Dumontet C
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):1017-25. PubMed ID: 7848263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered methional homoeostasis is associated with decreased apoptosis in BAF3 bcl2 murine lymphoid cells.
    Roch AM; Quash G; Michal Y; Chantepie J; Chantegrel B; Deshayes C; Doutheau A; Marvel J
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):973-81. PubMed ID: 8611183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine-derived metabolites in apoptosis: therapeutic opportunities for inhibitors of their metabolism in chemoresistant cancer cells.
    Quash G; Fournet G
    Curr Med Chem; 2009; 16(28):3686-700. PubMed ID: 19747146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methional, a cellular metabolite, induces apoptosis preferentially in G2/M-synchronized BAF3 murine lymphoid cells.
    Roch AM; Panaye G; Michal Y; Quash G
    Cytometry; 1998 Jan; 31(1):10-9. PubMed ID: 9450520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α,β-Acetylenic amino thiolester inhibitors of aldehyde dehydrogenases 1&3: suppressors of apoptogenic aldehyde oxidation and activators of apoptosis.
    Fournet G; Martin G; Quash G
    Curr Med Chem; 2013; 20(4):527-33. PubMed ID: 23231347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine dependence of tumor cells: programmed cell survival?
    Dumontet C; Roch AM; Quash G
    Oncol Res; 1996; 8(12):469-71. PubMed ID: 9160350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi.
    Billington DC; Golding BT; Primrose SB
    Biochem J; 1979 Sep; 182(3):827-36. PubMed ID: 42392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4-methylthio 2-oxobutanoate transaminase: a specific target for antiproliferative agents.
    Quash G; Roch AM; Charlot C; Chantepie J; Thomas V; Hamedi-Sangsari F; Vila J
    Bull Cancer; 2004 Apr; 91(4):E61-79. PubMed ID: 15562560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of methionine to methional by Lactococcus lactis.
    Amárita F; Fernández-Esplá D; Requena T; Pelaez C
    FEMS Microbiol Lett; 2001 Oct; 204(1):189-95. PubMed ID: 11682200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of 4-methylthio-2-oxobutanoate and its transaminase to the growth of methionine-dependent cells in culture. Effect of transaminase inhibitors.
    Ogier G; Chantepie J; Deshayes C; Chantegrel B; Charlot C; Doutheau A; Quash G
    Biochem Pharmacol; 1993 Apr; 45(8):1631-44. PubMed ID: 8484803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaplerotic reactions in tumour proliferation and apoptosis.
    Quash G; Fournet G; Reichert U
    Biochem Pharmacol; 2003 Aug; 66(3):365-70. PubMed ID: 12907234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents.
    Collins MK; Marvel J; Malde P; Lopez-Rivas A
    J Exp Med; 1992 Oct; 176(4):1043-51. PubMed ID: 1402650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of an alcohol dehydrogenase involved in the conversion of methional to methionol in Oenococcus oeni IOEB 8406.
    Vallet A; Santarelli X; Lonvaud-Funel A; de Revel G; Cabanne C
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):87-94. PubMed ID: 18850096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways that produce volatile sulphur compounds from methionine in Oenococcus oeni.
    Vallet A; Lucas P; Lonvaud-Funel A; de Revel G
    J Appl Microbiol; 2008 Jun; 104(6):1833-40. PubMed ID: 18217924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of ethylene. Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets.
    Mapson LW; Wardale DA
    Biochem J; 1967 Feb; 102(2):574-85. PubMed ID: 6032971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL3-dependent cells die by apoptosis on removal of their growth factor.
    Crompton T
    Growth Factors; 1991; 4(2):109-16. PubMed ID: 2049179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Gag-Myb-Ets fusion oncogene alters the apoptotic response and growth factor dependence of interleukin-3 dependent murine cells.
    Athanasiou M; Mavrothalassitis GJ; Yuan CC; Blair DG
    Oncogene; 1996 Jan; 12(2):337-44. PubMed ID: 8570210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine oxidation and apoptosis induction by ascorbate, gallate and hydrogen peroxide.
    Sakagami H; Satoh K; Kadofuku T; Takeda M
    Anticancer Res; 1997; 17(4A):2565-70. PubMed ID: 9252681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effects of ginsenoside Rg(3) against cyclophosphamide-induced DNA damage and cell apoptosis in mice.
    Zhang QH; Wu CF; Duan L; Yang JY
    Arch Toxicol; 2008 Feb; 82(2):117-23. PubMed ID: 17598087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-3 and Bcl-2 cooperatively inhibit etoposide-induced apoptosis in a murine pre-B cell line.
    Ascaso R; Marvel J; Collins MK; López-Rivas A
    Eur J Immunol; 1994 Mar; 24(3):537-41. PubMed ID: 7510234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.