BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 7848296)

  • 1. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume.
    Moir AM; Zammit VA
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):953-8. PubMed ID: 7848296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I.
    Moir AM; Zammit VA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):241-6. PubMed ID: 8097087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of changes in hepatic fatty acid and glycerolipid metabolism during the starved-to-fed transition in vivo. Studies on awake, unrestrained rats.
    Moir AM; Zammit VA
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):49-55. PubMed ID: 8424771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
    Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat.
    Drynan L; Quant PA; Zammit VA
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):767-70. PubMed ID: 8836117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat liver mitochondrial carnitine palmitoyltransferase-I, hepatic carnitine, and malonyl-CoA: effect of starvation.
    Kerner J; Parland WK; Minkler PE; Hoppel CL
    Arch Physiol Biochem; 2008 Jul; 114(3):161-70. PubMed ID: 18629681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I.
    Park EA; Mynatt RL; Cook GA; Kashfi K
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):853-8. PubMed ID: 7575418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility of zonation of fatty acid oxidation in rat liver.
    Guzmán M; Bijleveld C; Geelen MJ
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):853-60. PubMed ID: 7487941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes.
    Prip-Buus C; Pegorier JP; Duee PH; Kohl C; Girard J
    Biochem J; 1990 Jul; 269(2):409-15. PubMed ID: 2167069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats.
    Zammit VA
    Biochem J; 1981 Jul; 198(1):75-83. PubMed ID: 7326003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes.
    Sugden MC; Priestman DA; Orfali KA; Holness MJ
    Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of insulin treatment of diabetic rats on hepatic partitioning of fatty acids between oxidation and esterification, phospholipid and acylglycerol synthesis, and on the fractional rate of secretion of triacylglycerol in vivo.
    Moir AM; Zammit VA
    Biochem J; 1994 Nov; 304 ( Pt 1)(Pt 1):177-82. PubMed ID: 7998931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration.
    Decaux JF; Ferré P; Robin D; Robin P; Girard J
    J Biol Chem; 1988 Mar; 263(7):3284-9. PubMed ID: 2893801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of ketogenesis and fatty acid oxidation by glucagon and cyclic AMP in cultured hepatocytes from rabbit fetuses. Evidence for a decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition after glucagon or cyclic AMP treatment.
    Pégorier JP; Garcia-Garcia MV; Prip-Buus C; Duée PH; Kohl C; Girard J
    Biochem J; 1989 Nov; 264(1):93-100. PubMed ID: 2557835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.
    Drynan L; Quant PA; Zammit VA
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):791-5. PubMed ID: 8760364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism.
    Velasco G; Geelen MJ; Guzmán M
    Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase I activity and to bind to rat liver mitochondria during incubation in vitro. Differences in binding at 0 degree C and 37 degrees C with a fixed concentration of malonyl-CoA.
    Zammit VA; Corstorphine CG; Gray SR
    Biochem J; 1984 Sep; 222(2):335-42. PubMed ID: 6477517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action in vivo and in vitro of 2-tetradecylglycidic acid, 2-tetradecylglycidyl-CoA and 2-tetradecylglycidylcarnitine on hepatic carnitine palmitoyltransferase.
    Brady PS; Brady LJ
    Biochem J; 1986 Sep; 238(3):801-9. PubMed ID: 3800962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.