These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 7848776)

  • 21. Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation.
    Liu NT; Lefcourt AM; Nou X; Shelton DR; Zhang G; Lo YM
    J Food Prot; 2013 May; 76(5):827-32. PubMed ID: 23643124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofilms in food processing environments.
    Wong AC
    J Dairy Sci; 1998 Oct; 81(10):2765-70. PubMed ID: 9812282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Psychrotrophic Bacteria Equipped with Virulence and Colonization Traits Populate the Ice Cream Manufacturing Environment.
    Valentino V; De Filippis F; Sequino G; Ercolini D
    Appl Environ Microbiol; 2023 Aug; 89(8):e0076523. PubMed ID: 37432121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significance of microbial biofilms in food industry: a review.
    Kumar CG; Anand SK
    Int J Food Microbiol; 1998 Jun; 42(1-2):9-27. PubMed ID: 9706794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus.
    Dhowlaghar N; Bansal M; Schilling MW; Nannapaneni R
    Food Microbiol; 2018 Sep; 74():143-150. PubMed ID: 29706330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment.
    Somers EB; Johnson ME; Wong AC
    J Dairy Sci; 2001 Sep; 84(9):1926-36. PubMed ID: 11573770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Salmonella Biofilm Cell Transfer from Common Food Contact Surfaces to Beef Products.
    Wang R; King DA; Kalchayanand N
    J Food Prot; 2022 Apr; 85(4):632-638. PubMed ID: 34935943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods.
    Alonso VPP; Gonçalves MPMBB; de Brito FAE; Barboza GR; Rocha LO; Silva NCC
    Compr Rev Food Sci Food Saf; 2023 Jan; 22(1):688-713. PubMed ID: 36464983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments.
    Heir E; Møretrø T; Simensen A; Langsrud S
    Int J Food Microbiol; 2018 Jun; 275():46-55. PubMed ID: 29631210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of Listeria monocytogenes using biofilms of non-pathogenic soil bacteria (Streptomyces spp.) on stainless steel under desiccated condition.
    Kim Y; Kim H; Beuchat LR; Ryu JH
    Food Microbiol; 2019 Jun; 79():61-65. PubMed ID: 30621876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial biofilm formation on stainless steel in the food processing environment and its health implications.
    Dula S; Ajayeoba TA; Ijabadeniyi OA
    Folia Microbiol (Praha); 2021 Jun; 66(3):293-302. PubMed ID: 33768506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity.
    Di Bonaventura G; Piccolomini R; Paludi D; D'Orio V; Vergara A; Conter M; Ianieri A
    J Appl Microbiol; 2008 Jun; 104(6):1552-61. PubMed ID: 18194252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Formation of biological films by microororganisms in food productions].
    Tutelyan AV; Yushina YK; Sokolova OV; Bataeva DS; Fesyun AD; Datiy AV
    Vopr Pitan; 2019; 88(3):32-43. PubMed ID: 31265773
    [No Abstract]   [Full Text] [Related]  

  • 34. Microscopic findings for the study of biofilms in food environments.
    Olszewska MA
    Acta Biochim Pol; 2013; 60(4):531-7. PubMed ID: 24432309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges.
    Papaioannou E; Giaouris ED; Berillis P; Boziaris IS
    Int J Food Microbiol; 2018 Feb; 267():9-19. PubMed ID: 29275280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevalence of microbial biofilms on selected fresh produce and household surfaces.
    Rayner J; Veeh R; Flood J
    Int J Food Microbiol; 2004 Aug; 95(1):29-39. PubMed ID: 15240072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying recontamination through factory environments--a review.
    den Aantrekker ED; Boom RM; Zwietering MH; van Schothorst M
    Int J Food Microbiol; 2003 Jan; 80(2):117-30. PubMed ID: 12381398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food.
    Midelet G; Carpentier B
    J Appl Microbiol; 2004; 97(2):262-70. PubMed ID: 15239692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial colonization and biofilm development on minimally processed vegetables.
    Carmichael I; Harper IS; Coventry MJ; Taylor PW; Wan J; Hickey MW
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():45S-51S. PubMed ID: 21182692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.
    Jindal S; Anand S; Huang K; Goddard J; Metzger L; Amamcharla J
    J Dairy Sci; 2016 Dec; 99(12):9502-9513. PubMed ID: 27692715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.