These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7848826)

  • 21. GFAP-expressing radial glia-like cell bodies are involved in a one-to-one relationship with doublecortin-immunolabeled newborn neurons in the adult dentate gyrus.
    Shapiro LA; Korn MJ; Shan Z; Ribak CE
    Brain Res; 2005 Apr; 1040(1-2):81-91. PubMed ID: 15804429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy neurofilament accumulation and alpha-spectrin degradation accompany cerebellar white matter functional deficits following forebrain fluid percussion injury.
    Park E; Liu E; Shek M; Park A; Baker AJ
    Exp Neurol; 2007 Mar; 204(1):49-57. PubMed ID: 17070521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal distribution of neuronal calcium sensor-1 in the developing rat spinal cord.
    Kawasaki T; Nishio T; Kurosawa H; Roder J; Jeromin A
    J Comp Neurol; 2003 Jun; 460(4):465-75. PubMed ID: 12717707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The neurochemical maturation of the rabbit cerebellum.
    Lossi L; Ghidella S; Marroni P; Merighi A
    J Anat; 1995 Dec; 187 ( Pt 3)(Pt 3):709-22. PubMed ID: 8586569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of GFAP+ astrocytes in adult and neonatal rat brain.
    Taft JR; Vertes RP; Perry GW
    Int J Neurosci; 2005 Sep; 115(9):1333-43. PubMed ID: 16048809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(-) cells in cell proliferation.
    Sergent-Tanguy S; Michel DC; Neveu I; Naveilhan P
    J Neurosci Res; 2006 Jun; 83(8):1515-24. PubMed ID: 16612832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.
    Roda E; Coccini T; Acerbi D; Castoldi A; Bernocchi G; Manzo L
    J Chem Neuroanat; 2008 May; 35(3):285-94. PubMed ID: 18358697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Axon growth failure following corpus callosum lesions precedes glial reaction in perinatal rats.
    Ajtai BM; Kálmán M
    Anat Embryol (Berl); 2000 Oct; 202(4):313-21. PubMed ID: 11000282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental changes in human cerebellum: expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein.
    Milosevic A; Zecevic N
    J Comp Neurol; 1998 Jul; 396(4):442-60. PubMed ID: 9651004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cochlear innervation in the developing rat: an immunocytochemical study of neurofilament and spectrin proteins.
    Hafidi A; Despres G; Romand R
    J Comp Neurol; 1990 Oct; 300(2):153-61. PubMed ID: 2124223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autoantibodies to neurotypic and gliotypic proteins as biomarkers of neurotoxicity: assessment of trimethyltin (TMT).
    El-Fawal HA; O'Callaghan JP
    Neurotoxicology; 2008 Jan; 29(1):109-15. PubMed ID: 18001836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in pigment epithelium-derived factor expression following kainic acid induced cerebellar lesion in rat.
    Sanagi T; Yabe T; Yamada H
    Neurosci Lett; 2007 Aug; 424(1):66-71. PubMed ID: 17709187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure to methyl mercury results in serum autoantibodies to neurotypic and gliotypic proteins.
    el-Fawal HA; Gong Z; Little AR; Evans HL
    Neurotoxicology; 1996; 17(1):267-76. PubMed ID: 8784838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of acutely isolated cells from developing rat cerebellum.
    Hockberger PE; Yousif L; Nam SC
    Neuroimage; 1994 Nov; 1(4):276-87. PubMed ID: 9343577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and differentiation of glial precursor cells in the rat cerebellum.
    Levine JM; Stincone F; Lee YS
    Glia; 1993 Apr; 7(4):307-21. PubMed ID: 8320001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential expression and modification of neurofilament triplet proteins during cat cerebellar development.
    Riederer BM; Porchet R; Marugg RA
    J Comp Neurol; 1996 Jan; 364(4):704-17. PubMed ID: 8821456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential changes in expression of the neurofilament triplet protein-immunoreactivity in Purkinje cells of the cerebellum during the postnatal development of rats.
    Kondo H; Takahashi-Iwanaga H; Abe H; Watanabe M; Takahashi Y
    Arch Histol Cytol; 1991 Oct; 54(4):437-45. PubMed ID: 1760221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective regional alterations in the content or distribution of neuronal and glial cytoskeletal proteins in brain of rats chronically exposed to 2,5-hexanedione.
    Hernandez-Viadel ML; Rodrigo R; Felipo V
    Toxicol Ind Health; 2002 Aug; 18(7):333-41. PubMed ID: 15068133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteome analysis of actin filament-associated proteins in the postnatal rat cerebellum.
    Shi N; Tian C; Liang X; Jiang P; Liang L; Zhou L; Shu Y; Chen P; Wang Y
    Neuroscience; 2012 Dec; 227():90-101. PubMed ID: 23032931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurofilament protein abnormalities in PC12 cells: comparison with neurofilament proteins of normal cultured rat sympathetic neurons.
    Lee VM
    J Neurosci; 1985 Nov; 5(11):3039-46. PubMed ID: 3932605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.