These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 7849033)
1. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry. Vos R; Engelborghs Y; Izard J; Baty D Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033 [TBL] [Abstract][Full Text] [Related]
2. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
3. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants. Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927 [TBL] [Abstract][Full Text] [Related]
4. Tryptophan fluorescence of chloramphenicol acetyltransferase: resolution of individual excited-state lifetimes by site-directed mutagenesis and multifrequency phase fluorometry. Ellis J; Bagshaw CR; Shaw WV Biochemistry; 1995 Mar; 34(11):3513-20. PubMed ID: 7893646 [TBL] [Abstract][Full Text] [Related]
5. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state. Merrill AR; Palmer LR; Szabo AG Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence lifetimes of the tryptophan residues in ornithine transcarbamoylase. Shen WH Biochemistry; 1993 Dec; 32(50):13925-32. PubMed ID: 8268168 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop. Atkins WM; Stayton PS; Villafranca JJ Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820 [TBL] [Abstract][Full Text] [Related]
8. Time-resolved fluorescence studies of tryptophan mutants of Escherichia coli glutamine synthetase: conformational analysis of intermediates and transition-state complexes. Atkins WM; Villafranca JJ Protein Sci; 1992 Mar; 1(3):342-55. PubMed ID: 1363912 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence. Chen J; Toptygin D; Brand L; King J Biochemistry; 2008 Oct; 47(40):10705-21. PubMed ID: 18795792 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
11. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C. She M; Dong WJ; Umeda PK; Cheung HC Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821 [TBL] [Abstract][Full Text] [Related]
12. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis. Garinot-Schneider C; Pommer AJ; Moore GR; Kleanthous C; James R J Mol Biol; 1996 Aug; 260(5):731-42. PubMed ID: 8709151 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase. Ross JB; Schmidt CJ; Brand L Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898 [TBL] [Abstract][Full Text] [Related]
14. Steady state and picosecond time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase. Sau AK; Mitra S Biochim Biophys Acta; 2000 Sep; 1481(2):273-82. PubMed ID: 11018718 [TBL] [Abstract][Full Text] [Related]
15. Effects of i-propanol on the structural dynamics of Thermomyces lanuginosa lipase revealed by tryptophan fluorescence. Zhu K; Jutila A; Tuominen EK; Kinnunen PK Protein Sci; 2001 Feb; 10(2):339-51. PubMed ID: 11266620 [TBL] [Abstract][Full Text] [Related]
16. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. Tory MC; Merrill AR J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117 [TBL] [Abstract][Full Text] [Related]
17. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay. Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II. Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Royer CA Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911 [TBL] [Abstract][Full Text] [Related]
20. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface. Strasser F; Dey J; Eftink MR; Plapp BV Arch Biochem Biophys; 1998 Oct; 358(2):369-76. PubMed ID: 9784252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]