These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7849247)
1. Preferential uptake of intermediate-density lipoproteins from nephrotic patients by human mesangial and liver cells. Krämer-Guth A; Nauck M; Pavenstädt H; Königer M; Wieland H; Schollmeyer P; Wanner C J Am Soc Nephrol; 1994 Oct; 5(4):1081-90. PubMed ID: 7849247 [TBL] [Abstract][Full Text] [Related]
2. Receptor-mediated uptake of IDL and LDL from nephrotic patients by glomerular epithelial cells. Krämer A; Nauck M; Pavenstädt H; Schwedler S; Wieland H; Schollmeyer P; Wanner C Kidney Int; 1993 Dec; 44(6):1341-51. PubMed ID: 8301935 [TBL] [Abstract][Full Text] [Related]
3. Cholesterol metabolism in glomerular cells: effect of lipoproteins from nephrotic patients. Wanner C; Krämer-Guth A; Nauck M; Quaschning T; Pavenstädt H; Schollmeyer P Miner Electrolyte Metab; 1996; 22(1-3):39-46. PubMed ID: 8676822 [TBL] [Abstract][Full Text] [Related]
4. Interaction of native and oxidized lipoprotein(a) with human mesangial cells and matrix. Krämer-Guth A; Greiber S; Pavenstädt H; Quaschning T; Winkler K; Schollmeyer P; Wanner C Kidney Int; 1996 May; 49(5):1250-61. PubMed ID: 8731088 [TBL] [Abstract][Full Text] [Related]
5. VLDL and LDL metabolism in human and rat mesangial cells. Krämer-Guth A; Nauck M; Quaschning T; Pavenstädt H; Wieland H; Schollmeyer P; Wanner C Nephron; 1996; 74(2):378-85. PubMed ID: 8893159 [TBL] [Abstract][Full Text] [Related]
9. Uptake and metabolism of lipoproteins from patients with diabetes mellitus type II by glomerular epithelial cells. Krämer-Guth A; Quaschning T; Pavenstädt H; Galle J; Nauck M; Baumstark MW; Schollmeyer P; März W; Wanner C Nephrol Dial Transplant; 1997 Jul; 12(7):1336-43. PubMed ID: 9249767 [TBL] [Abstract][Full Text] [Related]
10. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Vaziri ND Kidney Int; 2016 Jul; 90(1):41-52. PubMed ID: 27165836 [TBL] [Abstract][Full Text] [Related]
11. Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Guerin M; Egger P; Soudant C; Le Goff W; van Tol A; Dupuis R; Chapman MJ Atherosclerosis; 2002 Aug; 163(2):287-96. PubMed ID: 12052475 [TBL] [Abstract][Full Text] [Related]
12. Progression of renal failure: role of apolipoprotein B-containing lipoproteins. Attman PO; Samuelsson O; Alaupovic P Kidney Int Suppl; 1997 Dec; 63():S98-101. PubMed ID: 9407433 [TBL] [Abstract][Full Text] [Related]
13. Interaction of very-low-density, intermediate-density, and low-density lipoproteins with human arterial wall proteoglycans. Anber V; Millar JS; McConnell M; Shepherd J; Packard CJ Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):2507-14. PubMed ID: 9409221 [TBL] [Abstract][Full Text] [Related]
14. Receptor-mediated lipoprotein uptake by human glomerular cells: comparison with skin fibroblasts and HepG2 cells. Quaschning T; Königer M; Krämer-Guth A; Greiber S; Pavenstädt H; Nauck M; Schollmeyer P; Wanner C Nephrol Dial Transplant; 1997 Dec; 12(12):2528-36. PubMed ID: 9430847 [TBL] [Abstract][Full Text] [Related]
15. High lipid levels in very low density lipoprotein and intermediate density lipoprotein may cause proteinuria and glomerulosclerosis in aging female analbuminemic rats. Joles JA; van Goor H; van der Horst ML; van Tol A; Elema JD; Koomans HA Lab Invest; 1995 Dec; 73(6):912-21. PubMed ID: 8558854 [TBL] [Abstract][Full Text] [Related]
16. VLDL and IDL apolipoprotein B-100 kinetics in familial hypercholesterolemia due to impaired LDL receptor function or to defective apolipoprotein B-100. Zulewski H; Ninnis R; Miserez AR; Baumstark MW; Keller U J Lipid Res; 1998 Feb; 39(2):380-7. PubMed ID: 9507998 [TBL] [Abstract][Full Text] [Related]
17. Arterial hypertension and hyperlipidemia as determinants of glomerulosclerosis. Gröne HJ; Walli AK; Gröne EF Clin Investig; 1993 Oct; 71(10):834-9. PubMed ID: 8305844 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of low density lipoproteins in nephrotic dyslipidemia: comparison of hypercholesterolemia alone and combined hyperlipidemia. Vega GL; Toto RD; Grundy SM Kidney Int; 1995 Feb; 47(2):579-86. PubMed ID: 7723244 [TBL] [Abstract][Full Text] [Related]
19. The very low- and intermediate-density lipoprotein fraction isolated from apolipoprotein E-knockout mice transforms macrophages to foam cells through an apolipoprotein E-independent pathway. Hakamata H; Sakaguchi H; Zhang C; Sakashita N; Suzuki H; Miyazaki A; Takeya M; Takahashi K; Kitamura N; Horiuchi S Biochemistry; 1998 Sep; 37(39):13720-7. PubMed ID: 9753460 [TBL] [Abstract][Full Text] [Related]
20. Pravastatin treatment of very low density, intermediate density and low density lipoproteins in hypercholesterolemia and combined hyperlipidemia secondary to the nephrotic syndrome. Toto RD; Grundy SM; Vega GL Am J Nephrol; 2000; 20(1):12-7. PubMed ID: 10644862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]