BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7849446)

  • 1. Paracrine interactions regulating renal microcirculatory function.
    Navar LG; Inscho EW; Harrison-Bernard LM; Takenaka T
    Clin Investig; 1994 Sep; 72(9):682-4. PubMed ID: 7849446
    [No Abstract]   [Full Text] [Related]  

  • 2. Paracrine regulation of the renal microcirculation.
    Navar LG; Inscho EW; Majid SA; Imig JD; Harrison-Bernard LM; Mitchell KD
    Physiol Rev; 1996 Apr; 76(2):425-536. PubMed ID: 8618962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of adenosine 5'-triphosphate in regulating renal microvascular function and in hypertension.
    Guan Z; Inscho EW
    Hypertension; 2011 Sep; 58(3):333-40. PubMed ID: 21768526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impaired renal vasodilator response attributed to endothelium-derived hyperpolarizing factor in streptozotocin--induced diabetic rats is restored by 5-methyltetrahydrofolate.
    De Vriese AS; Van de Voorde J; Blom HJ; Vanhoutte PM; Verbeke M; Lameire NH
    Diabetologia; 2000 Sep; 43(9):1116-25. PubMed ID: 11043857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vascular compartments of neovascularization: spotlight on the microcirculation.
    Kupatt C
    Curr Pharm Biotechnol; 2007 Feb; 8(1):27-33. PubMed ID: 17311550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide signaling in the microcirculation.
    Buerk DG; Barbee KA; Jaron D
    Crit Rev Biomed Eng; 2011; 39(5):397-433. PubMed ID: 22196161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of endothelial prostacyclin and nitric oxide in peripheral and pulmonary circulation.
    Gryglewski RJ; Chłopicki S; Uracz W; Marcinkiewicz E
    Med Sci Monit; 2001; 7(1):1-16. PubMed ID: 11208485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on Legrand et al.: The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats.
    Ji MH; Sun J; Yang JJ; Liu YX; Peng YG
    Intensive Care Med; 2012 Feb; 38(2):335; author reply 336. PubMed ID: 22147113
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits.
    De Moraes R; Gioseffi G; Nóbrega AC; Tibiriçá E
    J Appl Physiol (1985); 2004 Aug; 97(2):683-8. PubMed ID: 15090484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury.
    Ince C
    Nephron Clin Pract; 2014; 127(1-4):124-8. PubMed ID: 25343835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcirculatory dysfunction in sepsis.
    Lundy DJ; Trzeciak S
    Crit Care Clin; 2009 Oct; 25(4):721-31, viii. PubMed ID: 19892249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Link of renal microcirculatory dysfunction to increased coronary microcirculatory resistance in hypertensive patients.
    Lin C; Zhang P; Xue Y; Huang Y; Ji K
    Cardiol J; 2017; 24(6):623-632. PubMed ID: 28653312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: a novel mechanism for antihypertensive action.
    Kalinowski L; Dobrucki LW; Szczepanska-Konkel M; Jankowski M; Martyniec L; Angielski S; Malinski T
    Circulation; 2003 Jun; 107(21):2747-52. PubMed ID: 12742996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The endothelial L-arginine/nitric oxide pathway and the renal circulation.
    Lüscher TF; Bock HA
    Klin Wochenschr; 1991 Sep; 69(13):603-9. PubMed ID: 1753683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles.
    Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG
    Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus.
    Bogaert GA; Kogan BA; Mevorach RA
    Pediatr Res; 1993 Dec; 34(6):755-61. PubMed ID: 8108188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide and renal perfusion in humans.
    Perico N; Remuzzi G
    J Hypertens; 2002 Mar; 20(3):391-3. PubMed ID: 11875304
    [No Abstract]   [Full Text] [Related]  

  • 18. Modulation of renal microvascular function by adenosine.
    Inscho EW
    Am J Physiol Regul Integr Comp Physiol; 2003 Jul; 285(1):R23-5. PubMed ID: 12793988
    [No Abstract]   [Full Text] [Related]  

  • 19. Adaptations of the renal microcirculation to hypertension.
    Imig JD; Inscho EW
    Microcirculation; 2002; 9(4):315-28. PubMed ID: 12152107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of endothelium-derived nitric oxide in control of renal microvasculature in aging male rats.
    Reckelhoff JF; Manning RD
    Am J Physiol; 1993 Nov; 265(5 Pt 2):R1126-31. PubMed ID: 8238614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.