These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7849594)

  • 1. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.
    Shah SH; Kar RK; Asmawi AA; Rahman MB; Murad AM; Mahadi NM; Basri M; Rahman RN; Salleh AB; Chatterjee S; Tejo BA; Bhunia A
    PLoS One; 2012; 7(11):e49788. PubMed ID: 23209600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ice-binding site of antifreeze protein irreversibly binds to cell surface for its hypothermic protective function.
    Yang Y; Yamauchi A; Tsuda S; Kuramochi M; Mio K; Sasaki YC; Arai T
    Biochem Biophys Res Commun; 2023 Nov; 682():343-348. PubMed ID: 37837755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.
    Kondo H; Hanada Y; Sugimoto H; Hoshino T; Garnham CP; Davies PL; Tsuda S
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9360-5. PubMed ID: 22645341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice.
    Grabowska J; Kuffel A; Zielkiewicz J
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of the antifreeze-like domain of human sialic acid synthase.
    Hamada T; Ito Y; Abe T; Hayashi F; Güntert P; Inoue M; Kigawa T; Terada T; Shirouzu M; Yoshida M; Tanaka A; Sugano S; Yokoyama S; Hirota H
    Protein Sci; 2006 May; 15(5):1010-6. PubMed ID: 16597820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-ice interaction of an antifreeze protein observed with solid-state NMR.
    Siemer AB; Huang KY; McDermott AE
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17580-5. PubMed ID: 20884853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflections on antifreeze proteins and their evolution.
    Davies PL
    Biochem Cell Biol; 2022 May; ():. PubMed ID: 35580352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirror image forms of snow flea antifreeze protein prepared by total chemical synthesis have identical antifreeze activities.
    Pentelute BL; Gates ZP; Dashnau JL; Vanderkooi JM; Kent SB
    J Am Chem Soc; 2008 Jul; 130(30):9702-7. PubMed ID: 18598026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish antifreeze protein origin in sculpins by frameshifting within a duplicated housekeeping gene.
    Graham LA; Davies PL
    FEBS J; 2024 Jun; ():. PubMed ID: 38923815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze proteins.
    Roterman I; Banach M; Konieczny L
    Bioinformation; 2017; 13(12):400-401. PubMed ID: 29379256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function and evolution of antifreeze proteins.
    Ewart KV; Lin Q; Hew CL
    Cell Mol Life Sci; 1999 Feb; 55(2):271-83. PubMed ID: 10188586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of methyl-protonated valine and leucine residues into deuterated ocean pout type III antifreeze protein: expression, crystallization and preliminary neutron diffraction studies.
    Petit-Haertlein I; Blakeley MP; Howard E; Hazemann I; Mitschler A; Podjarny A; Haertlein M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jun; 66(Pt 6):665-9. PubMed ID: 20516595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Antifreeze Glycoproteins with Potent Ice-Binding Activity.
    Deleray AC; Saini SS; Wallberg AC; Kramer JR
    Chem Mater; 2024 Apr; 36(7):3424-3434. PubMed ID: 38699199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific conjugation of antifreeze proteins onto polymer-stabilized nanoparticles.
    Wilkins LE; Hasan M; Fayter AER; Biggs C; Walker M; Gibson MI
    Polym Chem; 2019 Jun; 10(23):2986-2990. PubMed ID: 31303900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Antifreeze Proteins Based on Key Evolutionary Information.
    Sun S; Ding H; Wang D; Han S
    Front Bioeng Biotechnol; 2020; 8():244. PubMed ID: 32274383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice Shell Purification of Ice-Active Compounds.
    Morris J; Liddy M; Marshall CJ
    Methods Mol Biol; 2024; 2730():25-34. PubMed ID: 37943448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended Temperature Range of the Ice-Binding Protein Activity.
    Sirotinskaya V; Bar Dolev M; Yashunsky V; Bahari L; Braslavsky I
    Langmuir; 2024 Apr; 40(14):7395-7404. PubMed ID: 38527127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C.
    Hansen T; Lee J; Reicher N; Ovadia G; Guo S; Guo W; Liu J; Braslavsky I; Rudich Y; Davies PL
    Elife; 2023 Dec; 12():. PubMed ID: 38109272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C.
    Hansen T; Lee JC; Reicher N; Ovadia G; Guo S; Guo W; Liu J; Braslavsky I; Rudich Y; Davies PL
    bioRxiv; 2023 Oct; ():. PubMed ID: 37577566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.