BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 7849649)

  • 41. A comparative study of the in vitro polymerization of tubulin in the presence of the microtubule-associated proteins MAP2 and tau.
    Sandoval IV; Vandekerckhove JS
    J Biol Chem; 1981 Aug; 256(16):8795-800. PubMed ID: 7263687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential assembly kinetics of alpha-tubulin isoforms in the presence of paclitaxel.
    Banerjee A; Kasmala LT
    Biochem Biophys Res Commun; 1998 Apr; 245(2):349-51. PubMed ID: 9571153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical and immunochemical identification of a microtubule-binding protein from bovine pancreas.
    Michalik L; Neuville P; Vanier MT; Launay JF
    Cell Motil Cytoskeleton; 1993; 25(4):381-90. PubMed ID: 8104715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Blot overlay identification of microtubule-binding peptides from bovine brain.
    Rozdzial MM; Neighbors BW; McIntosh JR
    Eur J Cell Biol; 1990 Jun; 52(1):27-35. PubMed ID: 2387308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Virions and membrane proteins of the potato X virus interact with microtubules and enables tubulin polymerization in vitro].
    Serazev TV; Nadezhdina ES; Shanina NA; Leshchiner AD; Kalinina NO; Morozov SIu
    Mol Biol (Mosk); 2003; 37(6):1080-8. PubMed ID: 14714504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coassembly of bovine and cod microtubule proteins: the ratio of the different tubulins within hybrid microtubules determines the ability to assemble at low temperatures, MAPs dependency and effects of Ca2+.
    Wallin M; Billger M
    Cell Motil Cytoskeleton; 1997; 38(3):297-307. PubMed ID: 9384220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Aminazine--highly effective inhibitor of tubulin polymerization].
    Androsova LV; Burbaeva GSh
    Biokhimiia; 1987 Jul; 52(7):1162-8. PubMed ID: 3663754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stabilization and bundling of subtilisin-treated microtubules induced by microtubule associated proteins.
    Saoudi Y; Paintrand I; Multigner L; Job D
    J Cell Sci; 1995 Jan; 108 ( Pt 1)():357-67. PubMed ID: 7738110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Posttranslational modification of brain tubulins from the Antarctic fish Notothenia coriiceps: reduced C-terminal glutamylation correlates with efficient microtubule assembly at low temperature.
    Redeker V; Frankfurter A; Parker SK; Rossier J; Detrich HW
    Biochemistry; 2004 Sep; 43(38):12265-74. PubMed ID: 15379565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules.
    Fridén B; Wallin M
    Mol Cell Biochem; 1991 Jul; 105(2):149-58. PubMed ID: 1681420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Morphological transformation of liposomes caused by assembly of encapsulated tubulin and determination of shape by microtubule-associated proteins (MAPs).
    Kaneko T; Itoh TJ; Hotani H
    J Mol Biol; 1998 Dec; 284(5):1671-81. PubMed ID: 9878378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synapsin I is a microtubule-bundling protein.
    Baines AJ; Bennett V
    Nature; 1986 Jan 9-15; 319(6049):145-7. PubMed ID: 2417124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins.
    Liu P; Würtz M; Zupa E; Pfeffer S; Schiebel E
    Curr Opin Cell Biol; 2021 Feb; 68():124-131. PubMed ID: 33190097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco.
    Hotta T; Fujita S; Uchimura S; Noguchi M; Demura T; Muto E; Hashimoto T
    Plant Physiol; 2016 Mar; 170(3):1189-205. PubMed ID: 26747285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aldolase-tubulin interactions: removal of tubulin C-terminals impairs interactions.
    Carr D; Knull H
    Biochem Biophys Res Commun; 1993 Aug; 195(1):289-93. PubMed ID: 8103323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Insights into microtubule nucleation from the crystal structure of human gamma-tubulin.
    Aldaz H; Rice LM; Stearns T; Agard DA
    Nature; 2005 May; 435(7041):523-7. PubMed ID: 15917813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rhazinilam mimics the cellular effects of taxol by different mechanisms of action.
    David B; Sévenet T; Morgat M; Guénard G; Moisand A; Tollon Y; Thoison O; Wright M
    Cell Motil Cytoskeleton; 1994; 28(4):317-26. PubMed ID: 7954858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative effects of cryosolvents on tubulin association, thermal stability, and binding of microtubule-associated proteins.
    Pajot-Augy E
    Cryobiology; 1993 Jun; 30(3):286-98. PubMed ID: 8370315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pyruvate kinase as a microtubule destabilizing factor in vitro.
    Vértessy BG; Bánkfalvi D; Kovács J; Löw P; Lehotzky A; Ovádi J
    Biochem Biophys Res Commun; 1999 Jan; 254(2):430-5. PubMed ID: 9918855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tubulin assembly in the presence of calcium ions and taxol: microtubule bundling and formation of macrotubule-ring complexes.
    Vater W; Böhm KJ; Unger E
    Cell Motil Cytoskeleton; 1997; 36(1):76-83. PubMed ID: 8986379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.