BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7849905)

  • 1. Microemulsions of perfluorinated and semi-fluorinated compounds.
    Lattes A; Rico-Lattes I
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(4):1007-18. PubMed ID: 7849905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microemulsions of triglyceride-based oils: The effect of co-oil and salinity on phase diagrams.
    Komesvarakul N; Sanders MD; Szekeres E; Acosta EJ; Faller JF; Mentlik T; Fisher LB; Nicoll G; Sabatini DA; Scamehorn JF
    J Cosmet Sci; 2006; 57(4):309-25. PubMed ID: 16957810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity.
    Karasulu HY
    Expert Opin Drug Deliv; 2008 Jan; 5(1):119-35. PubMed ID: 18095932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles of emulsion stabilization with special reference to polymeric surfactants.
    Tadros T
    J Cosmet Sci; 2006; 57(2):153-69. PubMed ID: 16688378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the incorporation of the non-steroidal anti-inflammatory naproxen into cationic O/W microemulsions.
    Correa MA; Scarpa MV; Franzini MC; Oliveira AG
    Colloids Surf B Biointerfaces; 2005 Jun; 43(2):108-14. PubMed ID: 15919187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence.
    Wilk KA; ZieliƄska K; Hamerska-Dudra A; Jezierski A
    J Colloid Interface Sci; 2009 Jun; 334(1):87-95. PubMed ID: 19383561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.
    Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions.
    Li P; Ghosh A; Wagner RF; Krill S; Joshi YM; Serajuddin AT
    Int J Pharm; 2005 Jan; 288(1):27-34. PubMed ID: 15607255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of oxygen uptake in perfluorocarbon emulsions. Some comparisons with uptake by blood.
    Shah N; Mehra A
    ASAIO J; 1996; 42(3):181-9. PubMed ID: 8725685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfluorinated blood substitutes and artificial oxygen carriers.
    Lowe KC
    Blood Rev; 1999 Sep; 13(3):171-84. PubMed ID: 10527269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions.
    Djordjevic L; Primorac M; Stupar M
    Int J Pharm; 2005 May; 296(1-2):73-9. PubMed ID: 15885457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions.
    Roy S; Dasgupta A; Das PK
    Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microemulsions as colloidal vehicle systems for dermal drug delivery. Part IV: Investigation of microemulsion systems based on a eutectic mixture of lidocaine and prilocaine as the colloidal phase by dynamic light scattering.
    Shukla A; Krause A; Neubert RH
    J Pharm Pharmacol; 2003 Jun; 55(6):741-8. PubMed ID: 12841933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B.
    Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Perfluorochemicals as artificial blood. problems and actual development (author's transl)].
    Schnoy N; Pfannkuch F; Beisbarth H
    Anaesthesist; 1979 Nov; 28(11):503-10. PubMed ID: 118676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.