BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7849987)

  • 21. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection.
    Hu B; Wang L; Zhou B; Zhang X; Sun Y; Ye H; Zhao L; Hu Q; Wang G; Zeng X
    J Chromatogr A; 2009 Apr; 1216(15):3223-31. PubMed ID: 19246045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography.
    Savitri Kumar N; Maduwantha B Wijekoon WM; Kumar V; Nimal Punyasiri PA; Sarath B Abeysinghe I
    J Chromatogr A; 2009 May; 1216(19):4295-302. PubMed ID: 19136115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic Synthesis and Antioxidant Activity of Mono- and Diacylated Epigallocatechin Gallate and Related By-Products.
    Peng H; Shahidi F
    J Agric Food Chem; 2022 Jul; 70(29):9227-9242. PubMed ID: 35830611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination of HSCCC and Sephadex LH-20 methods An approach to isolation and purification of the main individual theaflavins from black tea.
    Yang C; Li D; Wan X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan; 861(1):140-4. PubMed ID: 18063426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of hydrogen peroxide and methionine sulfoxide by epigallocatechin gallate and antioxidants.
    Sakagami H; Arakawa H; Maeda M; Satoh K; Kadofuku T; Fukuchi K; Gomi K
    Anticancer Res; 2001; 21(4A):2633-41. PubMed ID: 11724332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.
    Liu F; Xi X; Wang M; Fan L; Geng Y; Wang X
    J Sep Sci; 2014 Feb; 37(4):376-81. PubMed ID: 24311558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microencapsulated mycelium-bound tannase from Aspergillus niger: an efficient catalyst for esterification of propyl gallate in organic solvents.
    Yu XW; Li YQ
    Appl Biochem Biotechnol; 2005 Sep; 126(3):177-87. PubMed ID: 16148363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Presence of two forms of methylated (-)-epigallocatechin-3-gallate in green tea.
    Amarowicz R; Shahidi F
    Nahrung; 2003 Feb; 47(1):21-3. PubMed ID: 12653431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study on gallic acid preparation by using immobilized tannase from Aspergillus niger].
    Guo LH; Yang SK
    Sheng Wu Gong Cheng Xue Bao; 2000 Sep; 16(5):614-7. PubMed ID: 11191769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of oxidized epigallocatechin gallate by liquid chromatography/mass spectrometry.
    Mizooku Y; Yoshikawa M; Tsuneyoshi T; Arakawa R
    Rapid Commun Mass Spectrom; 2003; 17(16):1915-8. PubMed ID: 12876693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-production of tannase and gallic acid by a novel Penicillium rolfsii (CCMB 714).
    Andrade PML; Baptista L; Britto JS; Uetenabaro APT; Costa AMD
    Prep Biochem Biotechnol; 2018; 48(8):700-706. PubMed ID: 30040534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation and purification of epigallocatechin-3-gallate (EGCG) from green tea using combined macroporous resin and polyamide column chromatography.
    Jin X; Liu M; Chen Z; Mao R; Xiao Q; Gao H; Wei M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Oct; 1002():113-22. PubMed ID: 26319304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts.
    Hong YH; Jung EY; Park Y; Shin KS; Kim TY; Yu KW; Chang UJ; Suh HJ
    Biosci Biotechnol Biochem; 2013; 77(1):22-9. PubMed ID: 23291774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of exogenous epigallocatechin gallate peracetate in mouse plasma using liquid chromatography with quadrupole time-of-flight mass spectrometry.
    Chu KO; Man GC; Chan KP; Chu CY; Chan TH; Pang CP; Wang CC
    J Sep Sci; 2014 Dec; 37(23):3473-80. PubMed ID: 25250898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of propyl gallate in nonaqueous medium using cell-associated tannase of Bacillus massiliensis: effect of various parameters and statistical optimization.
    Aithal M; Belur PD
    Biotechnol Appl Biochem; 2013; 60(2):210-8. PubMed ID: 23600575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of fucosyltransferase VII by gallic acid and its derivatives.
    Niu X; Fan X; Sun J; Ting P; Narula S; Lundell D
    Arch Biochem Biophys; 2004 May; 425(1):51-7. PubMed ID: 15081893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma.
    Nakagawa K; Miyazawa T
    Anal Biochem; 1997 May; 248(1):41-9. PubMed ID: 9177723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.
    Curiel JA; Rodríguez H; Acebrón I; Mancheño JM; De Las Rivas B; Muñoz R
    J Agric Food Chem; 2009 Jul; 57(14):6224-30. PubMed ID: 19601665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model.
    van't Slot G; Humpf HU
    J Agric Food Chem; 2009 Sep; 57(17):8041-8. PubMed ID: 19670865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gallic acid production under anaerobic submerged fermentation by two bacilli strains.
    Aguilar-Zárate P; Cruz MA; Montañez J; Rodríguez-Herrera R; Wong-Paz JE; Belmares RE; Aguilar CN
    Microb Cell Fact; 2015 Dec; 14():209. PubMed ID: 26715179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.