BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7850355)

  • 1. Glial cell heterogeneity in the mammalian spinal cord.
    Miller RH; Zhang H; Fok-Seang J
    Perspect Dev Neurobiol; 1994; 2(3):225-31. PubMed ID: 7850355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cell surface antigen expressed by astrocytes and their precursors.
    Szigeti V; Miller RH
    Glia; 1993 May; 8(1):20-32. PubMed ID: 7685323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord.
    Fok-Seang J; Miller RH
    J Neurosci Res; 1994 Feb; 37(2):219-35. PubMed ID: 8151730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lines of glial precursor cells immortalised with a temperature-sensitive oncogene give rise to astrocytes and oligodendrocytes following transplantation into demyelinated lesions in the central nervous system.
    Trotter J; Crang AJ; Schachner M; Blakemore WF
    Glia; 1993 Sep; 9(1):25-40. PubMed ID: 8244529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity.
    Black JA; Sontheimer H; Waxman SG
    Glia; 1993 Apr; 7(4):272-85. PubMed ID: 8391514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures.
    Piao JH; Odeberg J; Samuelsson EB; Kjaeldgaard A; Falci S; Seiger A; Sundström E; Akesson E
    J Neurosci Res; 2006 Aug; 84(3):471-82. PubMed ID: 16721767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors.
    Hirano M; Goldman JE
    J Neurosci Res; 1988; 21(2-4):155-67. PubMed ID: 3216418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-specific growth properties and trophic requirements of brain- and spinal cord-derived rat embryonic neural precursor cells.
    Fu SL; Ma ZW; Yin L; Iannotti C; Lu PH; Xu XM
    Neuroscience; 2005; 135(3):851-62. PubMed ID: 16213987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo.
    Herrera J; Yang H; Zhang SC; Proschel C; Tresco P; Duncan ID; Luskin M; Mayer-Proschel M
    Exp Neurol; 2001 Sep; 171(1):11-21. PubMed ID: 11520117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.
    Lepore AC; Fischer I
    Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte precursors in neonatal rat spinal cord cultures.
    Fok-Seang J; Miller RH
    J Neurosci; 1992 Jul; 12(7):2751-64. PubMed ID: 1613556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell proliferation and replacement following contusive spinal cord injury.
    Zai LJ; Wrathall JR
    Glia; 2005 May; 50(3):247-57. PubMed ID: 15739189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord.
    Gingras M; Gagnon V; Minotti S; Durham HD; Berthod F
    J Neurosci Methods; 2007 Jun; 163(1):111-8. PubMed ID: 17445905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage.
    Cao QL; Zhang YP; Howard RM; Walters WM; Tsoulfas P; Whittemore SR
    Exp Neurol; 2001 Jan; 167(1):48-58. PubMed ID: 11161592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and differentiation of glial precursor cells in the rat cerebellum.
    Levine JM; Stincone F; Lee YS
    Glia; 1993 Apr; 7(4):307-21. PubMed ID: 8320001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells.
    Rao MS; Mayer-Proschel M
    Dev Biol; 1997 Aug; 188(1):48-63. PubMed ID: 9245511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.