BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7850419)

  • 1. Allosteric activation of latent p53 tetramers.
    Hupp TR; Lane DP
    Curr Biol; 1994 Oct; 4(10):865-75. PubMed ID: 7850419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases.
    Hupp TR; Lane DP
    Cold Spring Harb Symp Quant Biol; 1994; 59():195-206. PubMed ID: 7587070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the cryptic DNA binding function of mutant forms of p53.
    Hupp TR; Meek DW; Midgley CA; Lane DP
    Nucleic Acids Res; 1993 Jul; 21(14):3167-74. PubMed ID: 8341590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay.
    Pospísilová S; Brázda V; Amrichová J; Kamermeierová R; Palecek E; Vojtesek B
    J Immunol Methods; 2000 Apr; 237(1-2):51-64. PubMed ID: 10725451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group.
    Hansen S; Hupp TR; Lane DP
    J Biol Chem; 1996 Feb; 271(7):3917-24. PubMed ID: 8632013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2.
    Pospísilová S; Brázda V; Kucharíková K; Luciani MG; Hupp TR; Skládal P; Palecek E; Vojtesek B
    Biochem J; 2004 Mar; 378(Pt 3):939-47. PubMed ID: 14640983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small peptides activate the latent sequence-specific DNA binding function of p53.
    Hupp TR; Sparks A; Lane DP
    Cell; 1995 Oct; 83(2):237-45. PubMed ID: 7585941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner.
    Hupp TR; Lane DP
    J Biol Chem; 1995 Jul; 270(30):18165-74. PubMed ID: 7629129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities.
    Fiscella M; Zambrano N; Ullrich SJ; Unger T; Lin D; Cho B; Mercer WE; Anderson CW; Appella E
    Oncogene; 1994 Nov; 9(11):3249-57. PubMed ID: 7936649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding.
    Delphin C; Cahen P; Lawrence JJ; Baudier J
    Eur J Biochem; 1994 Jul; 223(2):683-92. PubMed ID: 8055938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of sequence-specific DNA-dependent acetylation of p53: the acetylation motif is exposed upon DNA binding.
    Cesková P; Chichger H; Wallace M; Vojtesek B; Hupp TR
    J Mol Biol; 2006 Mar; 357(2):442-56. PubMed ID: 16438982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the specific DNA binding activity of Xenopus laevis p53: evidence for conserved regulation through the carboxy-terminus of the protein.
    Bessard AC; Garay E; Lacronique V; Legros Y; Demarquay C; Houque A; Portefaix JM; Granier C; Soussi T
    Oncogene; 1998 Feb; 16(7):883-90. PubMed ID: 9484779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of p53 DNA binding activity by point mutation.
    Marston NJ; Ludwig RL; Vousden KH
    Oncogene; 1998 Jun; 16(24):3123-31. PubMed ID: 9671391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases.
    Takenaka I; Morin F; Seizinger BR; Kley N
    J Biol Chem; 1995 Mar; 270(10):5405-11. PubMed ID: 7534296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for allosteric effects on p53 oligomerization induced by phosphorylation.
    Muller P; Chan JM; Simoncik O; Fojta M; Lane DP; Hupp T; Vojtesek B
    Protein Sci; 2018 Feb; 27(2):523-530. PubMed ID: 29124793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers.
    Craig AL; Burch L; Vojtesek B; Mikutowska J; Thompson A; Hupp TR
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):133-41. PubMed ID: 10432310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein.
    Liu WL; Midgley C; Stephen C; Saville M; Lane DP
    J Mol Biol; 2001 Nov; 313(4):711-31. PubMed ID: 11697899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo.
    Kaeser MD; Iggo RD
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):95-100. PubMed ID: 11756653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable.
    McKendrick L; Milne D; Meek D
    Mol Cell Biochem; 1999 Jan; 191(1-2):187-99. PubMed ID: 10094408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.