These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7850419)

  • 21. Analysis of p53 "latency" and "activation" by fluorescence correlation spectroscopy. Evidence for different modes of high affinity DNA binding.
    Wölcke J; Reimann M; Klumpp M; Göhler T; Kim E; Deppert W
    J Biol Chem; 2003 Aug; 278(35):32587-95. PubMed ID: 12813031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of two distinct COOH-terminal domains is required for murine p53 activation by bacterial Hsp70.
    Hansen S; Midgley CA; Lane DP; Freeman BC; Morimoto RI; Hupp TR
    J Biol Chem; 1996 Nov; 271(48):30922-8. PubMed ID: 8940078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences.
    Yakovleva T; Pramanik A; Kawasaki T; Tan-No K; Gileva I; Lindegren H; Langel U; Ekstrom TJ; Rigler R; Terenius L; Bakalkin G
    J Biol Chem; 2001 May; 276(19):15650-8. PubMed ID: 11279079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific DNA binding by p53 is independent of mutation at serine 389, the casein kinase II site.
    Rolley N; Milner J
    Oncogene; 1994 Oct; 9(10):3067-70. PubMed ID: 8084615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of DNA modified by antitumor cisplatin by "latent" and "active" protein p53.
    Fojta M; Pivonkova H; Brazdova M; Kovarova L; Palecek E; Pospisilova S; Vojtesek B; Kasparkova J; Brabec V
    Biochem Pharmacol; 2003 Apr; 65(8):1305-16. PubMed ID: 12694871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A monoclonal antibody to a multiphosphorylated, conformational epitope at the carboxy-terminus of p53.
    Otvos L; Hoffmann R; Xiang ZQ; O I; Deng H; Wysocka M; Pease AM; Rogers ME; Blaszczyk-Thurin M; Ertl HC
    Biochim Biophys Acta; 1998 Sep; 1404(3):457-74. PubMed ID: 9739174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site.
    Blaydes JP; Hupp TR
    Oncogene; 1998 Aug; 17(8):1045-52. PubMed ID: 9747884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers.
    Rajagopalan S; Jaulent AM; Wells M; Veprintsev DB; Fersht AR
    Nucleic Acids Res; 2008 Oct; 36(18):5983-91. PubMed ID: 18812399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potential.
    Mundt M; Hupp T; Fritsche M; Merkle C; Hansen S; Lane D; Groner B
    Oncogene; 1997 Jul; 15(2):237-44. PubMed ID: 9244359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the specific DNA binding function of p53.
    Hupp TR; Meek DW; Midgley CA; Lane DP
    Cell; 1992 Nov; 71(5):875-86. PubMed ID: 1423635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability.
    Hansen S; Lane DP; Midgley CA
    J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p53 domains: identification and characterization of two autonomous DNA-binding regions.
    Wang Y; Reed M; Wang P; Stenger JE; Mayr G; Anderson ME; Schwedes JF; Tegtmeyer P
    Genes Dev; 1993 Dec; 7(12B):2575-86. PubMed ID: 8276240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53.
    Sakaguchi K; Sakamoto H; Lewis MS; Anderson CW; Erickson JW; Appella E; Xie D
    Biochemistry; 1997 Aug; 36(33):10117-24. PubMed ID: 9254608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The p53 protein is an unusually shaped tetramer that binds directly to DNA.
    Friedman PN; Chen X; Bargonetti J; Prives C
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3319-23. PubMed ID: 8475074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15.
    Dumaz N; Milne DM; Meek DW
    FEBS Lett; 1999 Dec; 463(3):312-6. PubMed ID: 10606744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the DNA binding of p53 by its interaction with protein kinase CK2.
    Prowald A; Schuster N; Montenarh M
    FEBS Lett; 1997 May; 408(1):99-104. PubMed ID: 9180277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel system to investigate the phosphorylation of the p53 tumor suppressor protein by the protein kinase CK2.
    McKendrick L; Meek DW
    Cell Mol Biol Res; 1994; 40(5-6):555-61. PubMed ID: 7735330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of an allosteric binding site on the transcription factor p53 using a phage-displayed peptide library.
    Ravera MW; Cárcamo J; Brissette R; Alam-Moghé A; Dedova O; Cheng W; Hsiao KC; Klebanov D; Shen H; Tang P; Blume A; Mandecki W
    Oncogene; 1998 Apr; 16(15):1993-9. PubMed ID: 9591783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the p53 protein by protein kinase C alpha and protein kinase C zeta.
    Youmell M; Park SJ; Basu S; Price BD
    Biochem Biophys Res Commun; 1998 Apr; 245(2):514-8. PubMed ID: 9571186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Latent and active p53 are identical in conformation.
    Ayed A; Mulder FA; Yi GS; Lu Y; Kay LE; Arrowsmith CH
    Nat Struct Biol; 2001 Sep; 8(9):756-60. PubMed ID: 11524676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.