These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7850843)

  • 21. Bacterial counts in carious dentine under restorations: 2-year in vivo effects.
    Weerheijm KL; Kreulen CM; de Soet JJ; Groen HJ; van Amerongen WE
    Caries Res; 1999; 33(2):130-4. PubMed ID: 9892780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shifts in the microbial population in relation to in situ caries progression.
    Thomas RZ; Zijnge V; Ciçek A; de Soet JJ; Harmsen HJ; Huysmans MC
    Caries Res; 2012; 46(5):427-31. PubMed ID: 22739571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacteriological studies on deep areas of carious dentine.
    Edwardsson S
    Odontol Revy Suppl; 1974; 32():1-143. PubMed ID: 4614155
    [No Abstract]   [Full Text] [Related]  

  • 24. Streptococci and actinomyces inhibit regrowth of Streptococcus mutans on gnotobiotic rat molar teeth after chlorhexidine varnish treatment.
    van der Hoeven JS; Schaeken MJ
    Caries Res; 1995; 29(2):159-62. PubMed ID: 7728832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of caries-related microorganisms in dentine lesions after short-term chlorhexidine or antibiotic treatment.
    Wicht MJ; Haak R; Schütt-Gerowitt H; Kneist S; Noack MJ
    Caries Res; 2004; 38(5):436-41. PubMed ID: 15316187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Occlusal hidden caries: a bacteriological profile.
    Weerheijm KL; de Soet JJ; de Graaff J; van Amerongen WE
    ASDC J Dent Child; 1990; 57(6):428-32. PubMed ID: 2258503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibacterial effect of chlorhexidine- containing glass ionomer cement in vivo: a pilot study.
    Frencken JE; Imazato S; Toi C; Mulder J; Mickenautsch S; Takahashi Y; Ebisu S
    Caries Res; 2007; 41(2):102-7. PubMed ID: 17284910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the cultivable flora in deep carious lesions following a stepwise excavation procedure.
    Bjørndal L; Larsen T
    Caries Res; 2000; 34(6):502-8. PubMed ID: 11093026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of the need for bitewing radiography in detecting caries in the primary dentition.
    Roeters FJ; Verdonschot EH; Bronkhorst EM; van 't Hof MA
    Community Dent Oral Epidemiol; 1994 Dec; 22(6):456-60. PubMed ID: 7882663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microbiological study of primary root-caries lesions with different treatment needs.
    Beighton D; Lynch E; Heath MR
    J Dent Res; 1993 Mar; 72(3):623-9. PubMed ID: 8450122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sealing of occlusal hidden caries lesions: an alternative for curative treatment?
    Weerheijm KL; de Soet JJ; van Amerongen WE; de Graaff J
    ASDC J Dent Child; 1992; 59(4):263-8. PubMed ID: 1430495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbiological analysis after complete or partial removal of carious dentin in primary teeth: a randomized clinical trial.
    Lula EC; Monteiro-Neto V; Alves CM; Ribeiro CC
    Caries Res; 2009; 43(5):354-8. PubMed ID: 19648746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human root caries: microbiota of a limited number of root caries lesions.
    Schüpbach P; Osterwalder V; Guggenheim B
    Caries Res; 1996; 30(1):52-64. PubMed ID: 8850584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular studies of the structural ecology of natural occlusal caries.
    Dige I; Grønkjær L; Nyvad B
    Caries Res; 2014; 48(5):451-60. PubMed ID: 24852305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validity of bite-wings for diagnosis of secondary caries in teeth with occlusal amalgam restorations in vitro.
    Rudolphy MP; van Amerongen JP; Penning C; ten Cate JM
    Caries Res; 1993; 27(4):312-6. PubMed ID: 8402808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutans streptococci and lactobacilli in breast-fed children with rampant caries.
    Matee MI; Mikx FH; Maselle SY; Van Palenstein Helderman WH
    Caries Res; 1992; 26(3):183-7. PubMed ID: 1628292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caries risk profiles in orthodontic patients at follow-up using Cariogram.
    Al Mulla AH; Kharsa SA; Kjellberg H; Birkhed D
    Angle Orthod; 2009 Mar; 79(2):323-30. PubMed ID: 19216589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of salivary tests and dental status in the prediction of caries increment in caries-susceptible teenagers.
    Vehkalahti M; Nikula-Sarakorpi E; Paunio I
    Caries Res; 1996; 30(1):22-8. PubMed ID: 8850579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in Candida spp., mutans streptococci and lactobacilli following treatment of early childhood caries: a 1-year follow-up.
    Klinke T; Urban M; Lück C; Hannig C; Kuhn M; Krämer N
    Caries Res; 2014; 48(1):24-31. PubMed ID: 24216710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals.
    Bjørndal L; Larsen T; Thylstrup A
    Caries Res; 1997; 31(6):411-7. PubMed ID: 9353579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.