BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 7851366)

  • 1. A method for estimating bicarbonate buffering of lactic acid during constant work rate exercise.
    Zhang YY; Sietsema KE; Sullivan CS; Wasserman K
    Eur J Appl Physiol Occup Physiol; 1994; 69(4):309-15. PubMed ID: 7851366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.
    Wasserman K; Stringer WW; Casaburi R; Koike A; Cooper CB
    Z Kardiol; 1994; 83 Suppl 3():1-12. PubMed ID: 7941654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of external to cellular respiration during exercise: the wisdom of the body revisited.
    Wasserman K
    Am J Physiol; 1994 Apr; 266(4 Pt 1):E519-39. PubMed ID: 8178973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal.
    Péronnet F; Aguilaniu B
    Respir Physiol Neurobiol; 2006 Jan; 150(1):4-18. PubMed ID: 15890562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The VCO2/VO2 relationship during heavy, constant work rate exercise reflects the rate of lactic acid accumulation.
    Stringer W; Wasserman K; Casaburi R
    Eur J Appl Physiol Occup Physiol; 1995; 72(1-2):25-31. PubMed ID: 8789566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bicarbonate buffering of lactic acid generated during exercise.
    Beaver WL; Wasserman K; Whipp BJ
    J Appl Physiol (1985); 1986 Feb; 60(2):472-8. PubMed ID: 3949651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of acute sodium bicarbonate ingestion on excess CO2 output during incremental exercise.
    Hirakoba K; Maruyama A; Misaka K
    Eur J Appl Physiol Occup Physiol; 1993; 66(6):536-41. PubMed ID: 8394808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the components of the alveolar CO2 output-O2 uptake relationship during incremental exercise in man.
    Cooper CB; Beaver WL; Cooper DM; Wasserman K
    Exp Physiol; 1992 Jan; 77(1):51-64. PubMed ID: 1543592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for detecting anaerobic threshold by gas exchange.
    Beaver WL; Wasserman K; Whipp BJ
    J Appl Physiol (1985); 1986 Jun; 60(6):2020-7. PubMed ID: 3087938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory gas analysis during exercise as a noninvasive measure of lactate concentration in chronic congestive heart failure.
    Wilson JR; Ferraro N; Weber KT
    Am J Cardiol; 1983 Jun; 51(10):1639-43. PubMed ID: 6407294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W; Wasserman K; Casaburi R; Pórszász J; Maehara K; French W
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; Obminski G; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):703-16. PubMed ID: 9218229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of blood lactate accumulation from excess CO2 output during constant exercise.
    Hirakoba K; Maruyama A; Misaka K
    Appl Human Sci; 1996 Sep; 15(5):205-10. PubMed ID: 8979401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 uptake kinetics in response to exercise. A measure of tissue anaerobiosis in heart failure.
    Zhang YY; Wasserman K; Sietsema KE; Ben-Dov I; Barstow TJ; Mizumoto G; Sullivan CS
    Chest; 1993 Mar; 103(3):735-41. PubMed ID: 8449060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease.
    Patessio A; Casaburi R; Carone M; Appendini L; Donner CF; Wasserman K
    Am Rev Respir Dis; 1993 Sep; 148(3):622-6. PubMed ID: 8368633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopic estimation of CO2 production during exercise before and after endurance training.
    Coggan AR; Habash DL; Mendenhall LA; Swanson SC; Kien CL
    J Appl Physiol (1985); 1993 Jul; 75(1):70-5. PubMed ID: 8397182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2 pulse and acid-base status during increasing work rate exercise in health and disease.
    Kisaka T; Cox TA; Dumitrescu D; Wasserman K
    Respir Physiol Neurobiol; 2015 Nov; 218():46-56. PubMed ID: 26226561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the threshold of transcutaneous partial pressure of carbon dioxide represent the respiratory compensation point or anaerobic threshold?
    Liu Y; Steinacker JM; Stauch M
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):326-31. PubMed ID: 8549575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of fitness on VO2 and VCO2 kinetics in response to proportional step increases in work rate.
    Zhang YY; Johnson MC; Chow N; Wasserman K
    Eur J Appl Physiol Occup Physiol; 1991; 63(2):94-100. PubMed ID: 1748111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.