These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7851924)

  • 21. Surface EMG based hand gesture identification using semi blind ICA: validation of ICA matrix analysis.
    Naik GR; Kumar DK; Palaniswami M
    Electromyogr Clin Neurophysiol; 2008; 48(3-4):169-80. PubMed ID: 18551837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feature-based classification of myoelectric signals using artificial neural networks.
    Gallant PJ; Morin EL; Peppard LE
    Med Biol Eng Comput; 1998 Jul; 36(4):485-9. PubMed ID: 10198534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structured training of children fitted with myoelectric prostheses.
    Hermansson LM
    Prosthet Orthot Int; 1991 Aug; 15(2):88-92. PubMed ID: 1923728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a microcontrolled bioinstrumentation system for active control of leg prostheses.
    Delis AL; da Rocha AF; Dos Santos I; Sene IG; Salomoni S; Borges GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2393-6. PubMed ID: 19163184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective classification for improved robustness of myoelectric control under nonideal conditions.
    Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromyographic sensor design for use with an externally powered prosthetic arm.
    Konigsberg RL
    J Assoc Adv Med Instrum; 1972; 6(5):347-51. PubMed ID: 5079986
    [No Abstract]   [Full Text] [Related]  

  • 30. Identification of motion from multi-channel EMG signals for control of prosthetic hand.
    Geethanjali P; Ray KK
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):419-27. PubMed ID: 21667211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A method for real-time pickup action signal].
    Lei M; Wana ZZ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2000 Jul; 24(4):200-2. PubMed ID: 12583131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining Improved Gray-Level Co-Occurrence Matrix With High Density Grid for Myoelectric Control Robustness to Electrode Shift.
    He J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1539-1548. PubMed ID: 28026779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human-like reflex control for an artificial hand.
    Folgheraiter M; Gini G
    Biosystems; 2004; 76(1-3):65-74. PubMed ID: 15351131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward higher-performance bionic limbs for wider clinical use.
    Farina D; Vujaklija I; Brånemark R; Bull AMJ; Dietl H; Graimann B; Hargrove LJ; Hoffmann KP; Huang HH; Ingvarsson T; Janusson HB; Kristjánsson K; Kuiken T; Micera S; Stieglitz T; Sturma A; Tyler D; Weir RFF; Aszmann OC
    Nat Biomed Eng; 2023 Apr; 7(4):473-485. PubMed ID: 34059810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control.
    Wu Y; Jiang D; Liu X; Bayford R; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1322-1333. PubMed ID: 30371386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems.
    Wheeler J; Bark K; Savall J; Cutkosky M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):58-66. PubMed ID: 20071271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.