These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 785218)

  • 21. Transcription termination: nucleotide sequence at 3' end of tryptophan operon in Escherichia coli.
    Wu AM; Platt T
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5442-6. PubMed ID: 364481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some novel transcription attenuation mechanisms used by bacteria.
    Yanofsky C; Konan KV; Sarsero JP
    Biochimie; 1996; 78(11-12):1017-24. PubMed ID: 9150880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.
    Gong M; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residual polarity and transcription-translation coupling during recovery from chloramphenicol or fusidic acid.
    Pastushok C; Kennell D
    J Bacteriol; 1974 Feb; 117(2):631-40. PubMed ID: 4359650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a Residue (Glu60) in TRAP Required for Inducing Efficient Transcription Termination at the
    McAdams NM; Patterson A; Gollnick P
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transcriptional barrier in the regulatory region of the tryptophan operon of Escherichia coli: its role in the regulation of repressor-independent RNA synthesis.
    Pouwels PH; Pannekoek H
    Mol Gen Genet; 1976 Dec; 149(3):255-65. PubMed ID: 799244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered mRNA metabolism in ribonuclease III-deficient strains of Escherichia coli.
    Talkad V; Achord D; Kennell D
    J Bacteriol; 1978 Aug; 135(2):528-41. PubMed ID: 98520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Punctuation of transcription in vitro of the tryptophan operon of Escherichia coli. A novel type of control of transcription.
    Pannekoek H; Brammar WJ; Pouwels PH
    Mol Gen Genet; 1975; 136(3):199-214. PubMed ID: 16094971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro transcription of the tryptophan operon in isolated bacterial nucleoids.
    Ishii S; Imamoto F
    Mol Gen Genet; 1976 Nov; 148(3):295-305. PubMed ID: 796665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Some base substitutions in the leader of an Escherichia coli ribosomal RNA operon affect the structure and function of ribosomes. Evidence for a transient scaffold function of the rRNA leader.
    Theissen G; Thelen L; Wagner R
    J Mol Biol; 1993 Sep; 233(2):203-18. PubMed ID: 8377198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of transcription-pausing in vivo in the trp operon leader region.
    Landick R; Carey J; Yanofsky C
    Proc Natl Acad Sci U S A; 1987 Mar; 84(6):1507-11. PubMed ID: 2436219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region.
    Landick R; Yanofsky C
    J Biol Chem; 1984 Sep; 259(18):11550-5. PubMed ID: 6206069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity of the attenuation response of the threonine operon of Escherichia coli is determined by the threonine and isoleucine codons in the leader transcript.
    Lynn SP; Burton WS; Donohue TJ; Gould RM; Gumport RI; Gardner JF
    J Mol Biol; 1987 Mar; 194(1):59-69. PubMed ID: 3112412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of leader peptide sequence and length on attenuation control of the trp operon of E.coli.
    Roesser JR; Yanofsky C
    Nucleic Acids Res; 1991 Feb; 19(4):795-800. PubMed ID: 2017362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rate of TRAP binding to RNA is crucial for transcription attenuation control of the B. subtilis trp operon.
    Barbolina MV; Kristoforov R; Manfredo A; Chen Y; Gollnick P
    J Mol Biol; 2007 Jul; 370(5):925-38. PubMed ID: 17555767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA.
    Gong F; Yanofsky C
    J Biol Chem; 2001 Jan; 276(3):1974-83. PubMed ID: 11050101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of the nusB gene products in transcription of Escherichia coli tryptophan operon in vitro.
    Kuroki K; Ishii S; Kano Y; Miyashita T; Nishi K; Imamoto F
    Mol Gen Genet; 1982; 185(2):369-71. PubMed ID: 7045592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ribosome release modulates basal level expression of the trp operon of Escherichia coli.
    Roesser JR; Yanofsky C
    J Biol Chem; 1988 Oct; 263(28):14251-5. PubMed ID: 3049573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of tryptophan operon expression by attenuation in cell-free extracts of Escherichia coli.
    Das A; Crawford IP; Yanofsky C
    J Biol Chem; 1982 Aug; 257(15):8795-8. PubMed ID: 7047528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro synthesis of the tryptophan operon leader peptides of Escherichia coli, Serratia marcescens, and Salmonella typhimurium.
    Das A; Urbanowski J; Weissbach H; Nestor J; Yanofsky C
    Proc Natl Acad Sci U S A; 1983 May; 80(10):2879-83. PubMed ID: 6344071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.