BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7852401)

  • 21. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1.
    Lin L; Braunewell KH; Gundelfinger ED; Anand R
    Biochem Biophys Res Commun; 2002 Aug; 296(4):827-32. PubMed ID: 12200122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recoverin is a zinc-binding protein.
    Permyakov SE; Cherskaya AM; Wasserman LA; Khokhlova TI; Senin II; Zargarov AA; Zinchenko DV; Zernii EY; Lipkin VM; Philippov PP; Uversky VN; Permyakov EA
    J Proteome Res; 2003; 2(1):51-7. PubMed ID: 12643543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association.
    Spilker C; Richter K; Smalla KH; Manahan-Vaughan D; Gundelfinger ED; Braunewell KH
    Neuroscience; 2000; 96(1):121-9. PubMed ID: 10683417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurocalcin, a novel calcium binding protein with three EF-hand domains, expressed in retinal amacrine cells and ganglion cells.
    Nakano A; Terasawa M; Watanabe M; Usuda N; Morita T; Hidaka H
    Biochem Biophys Res Commun; 1992 Aug; 186(3):1207-11. PubMed ID: 1510655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision.
    Ray S; Zozulya S; Niemi GA; Flaherty KM; Brolley D; Dizhoor AM; McKay DB; Hurley J; Stryer L
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5705-9. PubMed ID: 1385864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and expression of a cDNA encoding a new neurocalcin isoform (neurocalcin alpha) from bovine brain.
    Kato M; Watanabe Y; Iino S; Takaoka Y; Kobayashi S; Haga T; Hidaka H
    Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):871-6. PubMed ID: 9560316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: amino-terminal myristoylation determines functional activity.
    Braunewell KH; Spilker C; Behnisch T; Gundelfinger ED
    J Neurochem; 1997 May; 68(5):2129-39. PubMed ID: 9109541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural analysis of Mg2+ and Ca2+ binding, myristoylation, and dimerization of the neuronal calcium sensor and visinin-like protein 1 (VILIP-1).
    Li C; Pan W; Braunewell KH; Ames JB
    J Biol Chem; 2011 Feb; 286(8):6354-66. PubMed ID: 21169352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation.
    Calvert PD; Klenchin VA; Bownds MD
    J Biol Chem; 1995 Oct; 270(41):24127-9. PubMed ID: 7592614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurocalcin family: a novel calcium-binding protein abundant in bovine central nervous system.
    Hidaka H; Okazaki K
    Neurosci Res; 1993 Feb; 16(2):73-7. PubMed ID: 8387172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins.
    Cox JA; Durussel I; Comte M; Nef S; Nef P; Lenz SE; Gundelfinger ED
    J Biol Chem; 1994 Dec; 269(52):32807-13. PubMed ID: 7806504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers.
    Desmeules P; Penney SE; Desbat B; Salesse C
    Biophys J; 2007 Sep; 93(6):2069-82. PubMed ID: 17526567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.