These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Human heparanase. Purification, characterization, cloning, and expression. Toyoshima M; Nakajima M J Biol Chem; 1999 Aug; 274(34):24153-60. PubMed ID: 10446189 [TBL] [Abstract][Full Text] [Related]
10. Connective tissue activation XXXVIII: heparin/heparanase activity of human platelets resides in a high molecular weight protein, not in connective tissue activating peptide III. Castor CW; Kotlyar A; Edwards BE J Rheumatol; 2002 Nov; 29(11):2337-44. PubMed ID: 12415589 [TBL] [Abstract][Full Text] [Related]
11. The interaction between basic fibroblast growth factor and heparan sulfate can prevent the in vitro degradation of the glycosaminoglycan by Chinese hamster ovary cell heparanases. Tumova S; Bame KJ J Biol Chem; 1997 Apr; 272(14):9078-85. PubMed ID: 9083034 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. Levy-Adam F; Abboud-Jarrous G; Guerrini M; Beccati D; Vlodavsky I; Ilan N J Biol Chem; 2005 May; 280(21):20457-66. PubMed ID: 15760902 [TBL] [Abstract][Full Text] [Related]
13. The amino-terminal residues in the crystal structure of connective tissue activating peptide-III (des10) block the ELR chemotactic sequence. Malkowski MG; Lazar JB; Johnson PH; Edwards BF J Mol Biol; 1997 Feb; 266(2):367-80. PubMed ID: 9047370 [TBL] [Abstract][Full Text] [Related]
14. Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cells. Bar-Ner M; Kramer MD; Schirrmacher V; Ishai-Michaeli R; Fuks Z; Vlodavsky I Int J Cancer; 1985 Apr; 35(4):483-91. PubMed ID: 3157649 [TBL] [Abstract][Full Text] [Related]
15. Substrate specificity of heparanases from human hepatoma and platelets. Pikas DS; Li JP; Vlodavsky I; Lindahl U J Biol Chem; 1998 Jul; 273(30):18770-7. PubMed ID: 9668050 [TBL] [Abstract][Full Text] [Related]
16. Evidence that platelet and tumour heparanases are similar enzymes. Freeman C; Browne AM; Parish CR Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):361-8. PubMed ID: 10455023 [TBL] [Abstract][Full Text] [Related]
17. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes. Matzner Y; Bar-Ner M; Yahalom J; Ishai-Michaeli R; Fuks Z; Vlodavsky I J Clin Invest; 1985 Oct; 76(4):1306-13. PubMed ID: 2997275 [TBL] [Abstract][Full Text] [Related]
18. Formation of neutrophil-activating peptide 2 from platelet-derived connective-tissue-activating peptide III by different tissue proteinases. Car BD; Baggiolini M; Walz A Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):581-4. PubMed ID: 2039437 [TBL] [Abstract][Full Text] [Related]
19. Release of heparan sulfate glycosaminoglycans from proteoglycans in Chinese hamster ovary cells does not require proteolysis of the core protein. Bame KJ J Biol Chem; 1993 Sep; 268(27):19956-64. PubMed ID: 8376358 [TBL] [Abstract][Full Text] [Related]
20. Partial purification of heparanase activities in Chinese hamster ovary cells: evidence for multiple intracellular heparanases. Bame KJ; Hassall A; Sanderson C; Venkatesan I; Sun C Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):191-200. PubMed ID: 9806900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]