These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7852435)

  • 1. On the assumption of bilateral lower extremity joint moment symmetry during the sit-to-stand task.
    Lundin TM; Grabiner MD; Jahnigen DW
    J Biomech; 1995 Jan; 28(1):109-12. PubMed ID: 7852435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak hip and knee joint moments during a sit-to-stand movement are invariant to the change of seat height within the range of low to normal seat height.
    Yoshioka S; Nagano A; Hay DC; Fukashiro S
    Biomed Eng Online; 2014 Mar; 13(1):27. PubMed ID: 24620992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of the lower extremity joint motions on the total body motion in sit-to-stand movement.
    Yu B; Holly-Crichlow N; Brichta P; Reeves GR; Zablotny CM; Nawoczenski DA
    Clin Biomech (Bristol); 2000 Jul; 15(6):449-55. PubMed ID: 10771124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sit-to-stand at different periods of pregnancy.
    Lou SZ; Chou YL; Chou PH; Lin CJ; Chen UC; Su FC
    Clin Biomech (Bristol); 2001 Mar; 16(3):194-8. PubMed ID: 11240053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of symmetric and asymmetric foot placements on sit-to-stand joint moments.
    Gillette JC; Stevermer CA
    Gait Posture; 2012 Jan; 35(1):78-82. PubMed ID: 21890362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating movement performance: What you see isn't necessarily what you get.
    McAllister M; Costigan P
    Hum Mov Sci; 2019 Apr; 64():67-74. PubMed ID: 30660073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted vest effects on impact forces and joint work during vertical jump landings in men and women.
    Harry JR; James CR; Dufek JS
    Hum Mov Sci; 2019 Feb; 63():156-163. PubMed ID: 30553141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rising to stand from a chair: symmetry, and frontal and transverse plane kinematics and kinetics.
    Gilleard W; Crosbie J; Smith R
    Gait Posture; 2008 Jan; 27(1):8-15. PubMed ID: 17166719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscles limiting the sit-to-stand movement: an experimental simulation of muscle weakness.
    Van der Heijden MM; Meijer K; Willems PJ; Savelberg HH
    Gait Posture; 2009 Jul; 30(1):110-4. PubMed ID: 19419871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filtering ground reaction force data affects the calculation and interpretation of joint kinetics and energetics during drop landings.
    McCaw ST; Gardner JK; Stafford LN; Torry MR
    J Appl Biomech; 2013 Dec; 29(6):804-9. PubMed ID: 23434732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of sit-to-stand in typically developing children aged 4 to 12 years: Movement time, trunk and lower extremity joint angles, and joint moments.
    Mapaisansin P; Suriyaamarit D; Boonyong S
    Gait Posture; 2020 Feb; 76():14-21. PubMed ID: 31707306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the lower extremities during drop landings from three heights.
    McNitt-Gray JL
    J Biomech; 1993 Sep; 26(9):1037-46. PubMed ID: 8408086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of sit-to-stand movements.
    Kotake T; Dohi N; Kajiwara T; Sumi N; Koyama Y; Miura T
    Arch Phys Med Rehabil; 1993 Oct; 74(10):1095-9. PubMed ID: 8215863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of weight bearing visual feedback on movement symmetry during sit to stand task.
    Abujaber S; Pozzi F; Zeni J
    Clin Biomech (Bristol); 2017 Aug; 47():110-116. PubMed ID: 28641199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of the sit-to-stand movement: a review.
    Janssen WG; Bussmann HB; Stam HJ
    Phys Ther; 2002 Sep; 82(9):866-79. PubMed ID: 12201801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two strategies of transferring from sit-to-stand; the activation of monoarticular and biarticular muscles.
    Doorenbosch CA; Harlaar J; Roebroeck ME; Lankhorst GJ
    J Biomech; 1994 Nov; 27(11):1299-307. PubMed ID: 7798280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side difference in the hip and knee joint moments during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis.
    Roy G; Nadeau S; Gravel D; Piotte F; Malouin F; McFadyen BJ
    Clin Biomech (Bristol); 2007 Aug; 22(7):795-804. PubMed ID: 17512648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of Inertial Sensor-Based Estimation Methods of Lower Limb Joint Moments and Ground Reaction Force: Results for Squat and Sit-to-Stand Movements in the Sagittal Plane.
    Kodama J; Watanabe T
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27490544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.