These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 7853097)

  • 1. Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene.
    Pruitt L; Koo J; Rimnac CM; Suresh S; Wright TM
    J Orthop Res; 1995 Jan; 13(1):143-6. PubMed ID: 7853097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sliding locus on subsurface crack formation in ultra-high-molecular-weight polyethylene knee component.
    Todo S; Tomita N; Kitakura T; Yamano Y
    Biomed Mater Eng; 1999; 9(1):13-20. PubMed ID: 10436849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual stresses in ultra-high molecular weight polyethylene loaded cyclically by a rigid moving indenter in nonconforming geometries.
    Estupiñán JA; Bartel DL; Wright TM
    J Orthop Res; 1998 Jan; 16(1):80-8. PubMed ID: 9580258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene.
    Pruitt LA
    Biomaterials; 2005 Mar; 26(8):905-15. PubMed ID: 15353202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An observation on subsurface defects of ultra high molecular weight polyethylene due to rolling contact.
    Ohashi M; Tomita N; Ikada Y; Ikeuchi K; Motoike T
    Biomed Mater Eng; 1996; 6(6):441-51. PubMed ID: 9138654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulations on fatigue destruction of ultra-high molecular weight polyethylene using discrete element analyses.
    Shibata N; Tomita N; Ikeuchi K
    J Biomed Mater Res A; 2003 Mar; 64(3):570-82. PubMed ID: 12579572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements.
    McKellop H; Shen FW; Lu B; Campbell P; Salovey R
    J Orthop Res; 1999 Mar; 17(2):157-67. PubMed ID: 10221831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of design, materials and kinematics on the in vitro wear of total knee replacements.
    McEwen HM; Barnett PI; Bell CJ; Farrar R; Auger DD; Stone MH; Fisher J
    J Biomech; 2005 Feb; 38(2):357-65. PubMed ID: 15598464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental mechanisms of fatigue and fracture.
    Christ HJ
    Stud Health Technol Inform; 2008; 133():56-67. PubMed ID: 18376013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing.
    Villarraga ML; Kurtz SM; Herr MP; Edidin AA
    J Biomed Mater Res A; 2003 Aug; 66(2):298-309. PubMed ID: 12889000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The natural history of ultra high molecular weight polyethylene.
    Bostrom MP; Bennett AP; Rimnac CM; Wright TM
    Clin Orthop Relat Res; 1994 Dec; (309):20-8. PubMed ID: 7994961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cracking and impingement in ultra-high-molecular-weight polyethylene acetabular liners.
    Birman MV; Noble PC; Conditt MA; Li S; Mathis KB
    J Arthroplasty; 2005 Oct; 20(7 Suppl 3):87-92. PubMed ID: 16214008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear of contemporary total knee replacements--a knee simulator study of six current designs.
    Utzschneider S; Harrasser N; Schroeder C; Mazoochian F; Jansson V
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):583-8. PubMed ID: 19450910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.
    Connelly GM; Rimnac CM; Wright TM; Hertzberg RW; Manson JA
    J Orthop Res; 1984; 2(2):119-25. PubMed ID: 6491807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compliance calibration for fatigue crack propagation testing of ultra high molecular weight polyethylene.
    Varadarajan R; Rimnac CM
    Biomaterials; 2006 Sep; 27(27):4693-7. PubMed ID: 16750266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A comparative study on cyclic and static fatigue of dental ceramic by means of Hertzian's contact].
    Liu WC; Chao YL; Wan QB; Huang CM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2005 Nov; 40(6):508-10. PubMed ID: 16329843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of contact stress in metal-backed patellar replacements. A predictor of survivorship.
    Buechel FF; Pappas MJ; Makris G
    Clin Orthop Relat Res; 1991 Dec; (273):190-7. PubMed ID: 1959271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.