These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. Deitmer JW; Szatkowski M J Physiol; 1990 Feb; 421():617-31. PubMed ID: 2112195 [TBL] [Abstract][Full Text] [Related]
6. Evidence for glial control of extracellular pH in the leech central nervous system. Deitmer JW Glia; 1992; 5(1):43-7. PubMed ID: 1531809 [TBL] [Abstract][Full Text] [Related]
9. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. Deitmer JW; Schlue WR J Physiol; 1987 Jul; 388():261-83. PubMed ID: 2821243 [TBL] [Abstract][Full Text] [Related]
10. Stimulus-evoked changes of extra- and intracellular pH in the leech central nervous system. II. Mechanisms and maintenance of pH homeostasis. Rose CR; Deitmer JW J Neurophysiol; 1995 Jan; 73(1):132-40. PubMed ID: 7714559 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of glutamate uptake transport by CO(2)/bicarbonate in the leech giant glial cell. Deitmer JW; Schneider HP Glia; 2000 Jun; 30(4):392-400. PubMed ID: 10797619 [TBL] [Abstract][Full Text] [Related]
12. Bicarbonate-dependent changes of intracellular sodium and pH in identified leech glial cells. Deitmer JW Pflugers Arch; 1992 Apr; 420(5-6):584-9. PubMed ID: 1614834 [TBL] [Abstract][Full Text] [Related]
13. Stimulus-evoked changes of extra- and intracellular pH in the leech central nervous system. I. Bicarbonate dependence. Rose CR; Deitmer JW J Neurophysiol; 1995 Jan; 73(1):125-31. PubMed ID: 7714558 [TBL] [Abstract][Full Text] [Related]
14. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system. Frey G; Schlue WR J Physiol; 1993 Mar; 462():627-43. PubMed ID: 8331595 [TBL] [Abstract][Full Text] [Related]
15. Evidence for an electrogenic Na+-HCO3- symport in rat cardiac myocytes. Aiello EA; Petroff MG; Mattiazzi AR; Cingolani HE J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):137-48. PubMed ID: 9729624 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of pH recovery from intracellular acid loads in the leech connective glial cell. Szatkowski M; Schlue WR Glia; 1992; 5(3):193-200. PubMed ID: 1534066 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of potassium uptake in neuropile glial cells in the central nervous system of the leech. Wuttke WA J Neurophysiol; 1990 May; 63(5):1089-97. PubMed ID: 2358863 [TBL] [Abstract][Full Text] [Related]
18. Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate. Deitmer JW; Schneider HP Glia; 1997 Feb; 19(2):111-22. PubMed ID: 9034828 [TBL] [Abstract][Full Text] [Related]
19. Reevaluation of Cl-/HCO3- exchange in cultured bovine corneal endothelial cells. Bonanno JA; Yi G; Kang XJ; Srinivas SP Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2713-22. PubMed ID: 9856782 [TBL] [Abstract][Full Text] [Related]
20. Independent changes of intracellular calcium and pH in identified leech glial cells. Deitmer JW; Schneider HP; Munsch T Glia; 1993 Apr; 7(4):299-306. PubMed ID: 8391515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]