These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7853234)

  • 61. [Effects of agonists and antagonists of rhyanodine receptors on potassium contractures in twitch and tonic frog skeletal muscle fibers].
    Katina IE; Nasledov GA
    Biofizika; 2006; 51(5):898-905. PubMed ID: 17131831
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Caffeine contracture in guinea-pig ventricular muscle and the effect of extracellular sodium ions.
    Kitazawa T
    J Physiol; 1988 Aug; 402():703-29. PubMed ID: 3236253
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The removal of myoplasmic free calcium following calcium release in frog skeletal muscle.
    Melzer W; Ríos E; Schneider MF
    J Physiol; 1986 Mar; 372():261-92. PubMed ID: 3487641
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparative analysis of the effects of exercise training on contractile responses in fast- and slow-twitch rat skeletal muscles.
    Joumaa WH; Léoty C
    J Comp Physiol B; 2002 May; 172(4):329-38. PubMed ID: 12037595
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):31-43. PubMed ID: 7853224
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin 2.
    Williams DA; Fay FS
    Am J Physiol; 1986 May; 250(5 Pt 1):C779-91. PubMed ID: 3085513
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cyclopiazonic acid-induced changes in the contraction and Ca2+ transient of frog fast-twitch skeletal muscle.
    Même W; Huchet-Cadiou C; Léoty C
    Am J Physiol; 1998 Jan; 274(1):C253-61. PubMed ID: 9458735
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Myoplasmic calcium transients monitored with purpurate indicator dyes injected into intact frog skeletal muscle fibers.
    Konishi M; Baylor SM
    J Gen Physiol; 1991 Feb; 97(2):245-70. PubMed ID: 2016580
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra.
    Konishi M; Hollingworth S; Harkins AB; Baylor SM
    J Gen Physiol; 1991 Feb; 97(2):271-301. PubMed ID: 2016581
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of Ca2+ channel blockers on K+ contractures in twitch fibres of the frog (Rana pipiens).
    Gamboa-Aldeco R; Huerta M; Stefani E
    J Physiol; 1988 Mar; 397():389-99. PubMed ID: 2457700
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Calcium transients in normal and denervated slow muscle fibres of the frog.
    Miledi R; Parker I; Schalow G
    J Physiol; 1981 Sep; 318():191-206. PubMed ID: 6976426
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles.
    Chua M; Dulhunty AF
    J Gen Physiol; 1988 May; 91(5):737-57. PubMed ID: 3418320
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.
    Cully TR; Edwards JN; Murphy RM; Launikonis BS
    J Physiol; 2016 Jun; 594(11):2795-810. PubMed ID: 26775687
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Contractures in a superfused frog's ventricle.
    Lamb JF; McGuigan JA
    J Physiol; 1966 Oct; 186(2):261-83. PubMed ID: 16992235
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Calibration of mammalian skeletal muscle Ca
    Milán AF; Rincón OA; Arango LB; Reutovich AA; Smith GL; Giraldo MA; Bou-Abdallah F; Calderón JC
    Biochim Biophys Acta Gen Subj; 2021 Sep; 1865(9):129939. PubMed ID: 34082059
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research.
    Bolaños P; Calderón JC
    Front Physiol; 2022; 13():989796. PubMed ID: 36117698
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Elementary calcium release events in the skeletal muscle cells of the honey bee Apis mellifera.
    Collet C; Charreton M; Szabo L; Takacs M; Csernoch L; Szentesi P
    Sci Rep; 2021 Aug; 11(1):16731. PubMed ID: 34408196
    [TBL] [Abstract][Full Text] [Related]  

  • 78. New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin.
    Lamboley CR; Kake Guena SA; Touré F; Hébert C; Yaddaden L; Nadeau S; Bouchard P; Wei-LaPierre L; Lainé J; Rousseau EC; Frenette J; Protasi F; Dirksen RT; Pape PC
    J Gen Physiol; 2015 Feb; 145(2):127-53. PubMed ID: 25624449
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice.
    García-Pelagio KP; Bloch RJ; Ortega A; González-Serratos H
    J Muscle Res Cell Motil; 2011 Mar; 31(5-6):323-36. PubMed ID: 21312057
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A malignant hyperthermia-inducing mutation in RYR1 (R163C): alterations in Ca2+ entry, release, and retrograde signaling to the DHPR.
    Estève E; Eltit JM; Bannister RA; Liu K; Pessah IN; Beam KG; Allen PD; López JR
    J Gen Physiol; 2010 Jun; 135(6):619-28. PubMed ID: 20479110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.