BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 7853496)

  • 1. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor.
    Herrmann CH; Rice AP
    J Virol; 1995 Mar; 69(3):1612-20. PubMed ID: 7853496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function.
    Yang X; Herrmann CH; Rice AP
    J Virol; 1996 Jul; 70(7):4576-84. PubMed ID: 8676484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation.
    Isel C; Karn J
    J Mol Biol; 1999 Jul; 290(5):929-41. PubMed ID: 10438593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling Tat.
    Karn J
    J Mol Biol; 1999 Oct; 293(2):235-54. PubMed ID: 10550206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
    Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T
    J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription.
    Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN
    Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.
    Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A
    J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation.
    Ping YH; Rana TM
    J Biol Chem; 2001 Apr; 276(16):12951-8. PubMed ID: 11112772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription.
    García-Martínez LF; Mavankal G; Neveu JM; Lane WS; Ivanov D; Gaynor RB
    EMBO J; 1997 May; 16(10):2836-50. PubMed ID: 9184228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines.
    Herrmann CH; Carroll RG; Wei P; Jones KA; Rice AP
    J Virol; 1998 Dec; 72(12):9881-8. PubMed ID: 9811724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences.
    Bourgeois CF; Kim YK; Churcher MJ; West MJ; Karn J
    Mol Cell Biol; 2002 Feb; 22(4):1079-93. PubMed ID: 11809800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tat, Tat-associated kinase, and transcription.
    Jeang KT
    J Biomed Sci; 1998; 5(1):24-7. PubMed ID: 9570510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.
    Nekhai S; Zhou M; Fernandez A; Lane WS; Lamb NJ; Brady J; Kumar A
    Biochem J; 2002 Jun; 364(Pt 3):649-57. PubMed ID: 12049628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taking a new TAK on tat transactivation.
    Jones KA
    Genes Dev; 1997 Oct; 11(20):2593-9. PubMed ID: 9334323
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation.
    Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J
    Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II.
    Mavankal G; Ignatius Ou SH; Oliver H; Sigman D; Gaynor RB
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2089-94. PubMed ID: 8700889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of Tat-associated kinase-independent transcriptional elongation from the human immunodeficiency virus type-1 long terminal repeat by a cellular enhancer.
    West MJ; Karn J
    EMBO J; 1999 Mar; 18(5):1378-86. PubMed ID: 10064603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation.
    Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA
    Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro.
    Zhu Y; Pe'ery T; Peng J; Ramanathan Y; Marshall N; Marshall T; Amendt B; Mathews MB; Price DH
    Genes Dev; 1997 Oct; 11(20):2622-32. PubMed ID: 9334325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription.
    Zhou M; Nekhai S; Bharucha DC; Kumar A; Ge H; Price DH; Egly JM; Brady JN
    J Biol Chem; 2001 Nov; 276(48):44633-40. PubMed ID: 11572868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.