BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 7854186)

  • 21. Enamino-oxindole HIV protease inhibitors.
    Eissenstat M; Guerassina T; Gulnik S; Afonina E; Silva AM; Ludtke D; Yokoe H; Yu B; Erickson J
    Bioorg Med Chem Lett; 2012 Aug; 22(15):5078-83. PubMed ID: 22749283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HIV protease: enzyme function and drug resistance.
    Gulnik S; Erickson JW; Xie D
    Vitam Horm; 2000; 58():213-56. PubMed ID: 10668400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors.
    Kunze J; Todoroff N; Schneider P; Rodrigues T; Geppert T; Reisen F; Schreuder H; Saas J; Hessler G; Baringhaus KH; Schneider G
    J Chem Inf Model; 2014 Mar; 54(3):987-91. PubMed ID: 24528206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational analysis of HIV-1 protease protein binding pockets.
    Ko GM; Reddy AS; Kumar S; Bailey BA; Garg R
    J Chem Inf Model; 2010 Oct; 50(10):1759-71. PubMed ID: 20925403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
    Chellappan S; Kairys V; Fernandes MX; Schiffer C; Gilson MK
    Proteins; 2007 Aug; 68(2):561-7. PubMed ID: 17474129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of inhibitor binding to feline and human immunodeficiency virus proteases: structure-based drug design and the resistance problem.
    Dunn BM; Pennington MW; Frase DC; Nash K
    Biopolymers; 1999; 51(1):69-77. PubMed ID: 10380354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New active HIV-1 protease inhibitors derived from 3-hexanol: conformation study of the free inhibitors in crystalline state and in complex with the enzyme.
    Ziółkowska NE; Bujacz A; Randad RS; Erickson JW; Skálová T; Hašek J; Bujacz G
    Chem Biol Drug Des; 2012 May; 79(5):798-809. PubMed ID: 22296826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease.
    Li D; Liu MS; Ji B; Hwang KC; Huang Y
    Chem Biol Drug Des; 2012 Sep; 80(3):440-54. PubMed ID: 22621379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A modular approach to HIV-1 proteinase inhibitor design.
    Uhlíková T; Konvalinka J; Pichová I; Soucek M; Kräusslich HG; Vondrásek J
    Biochem Biophys Res Commun; 1996 May; 222(1):38-43. PubMed ID: 8630071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease.
    Yedidi RS; Muhuhi JM; Liu Z; Bencze KZ; Koupparis K; O'Connor CE; Kovari IA; Spaller MR; Kovari LC
    Biochem Biophys Res Commun; 2013 Sep; 438(4):703-8. PubMed ID: 23921229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-evolution of nelfinavir-resistant HIV-1 protease and the p1-p6 substrate.
    Kolli M; Lastere S; Schiffer CA
    Virology; 2006 Apr; 347(2):405-9. PubMed ID: 16430939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor.
    Hill R
    Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407
    [No Abstract]   [Full Text] [Related]  

  • 35. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor.
    Bäckbro K; Löwgren S; Osterlund K; Atepo J; Unge T; Hultén J; Bonham NM; Schaal W; Karlén A; Hallberg A
    J Med Chem; 1997 Mar; 40(6):898-902. PubMed ID: 9083478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity.
    Velazquez-Campoy A; Todd MJ; Freire E
    Biochemistry; 2000 Mar; 39(9):2201-7. PubMed ID: 10694385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes.
    Prabu-Jeyabalan M; Nalivaika E; Schiffer CA
    Structure; 2002 Mar; 10(3):369-81. PubMed ID: 12005435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entrapment and inhibition of human immunodeficiency virus proteinase by alpha 2-macroglobulin and structural changes in the inhibitor.
    Athauda SB; Ido E; Arakawa H; Nishigai M; Kyushiki H; Yoshinaka Y; Takahashi T; Ikai A; Tang J; Takahashi K
    J Biochem; 1993 Jun; 113(6):742-6. PubMed ID: 7690356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active site binding modes of curcumin in HIV-1 protease and integrase.
    Vajragupta O; Boonchoong P; Morris GM; Olson AJ
    Bioorg Med Chem Lett; 2005 Jul; 15(14):3364-8. PubMed ID: 15950462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Occupation of a thermoresistant-scaffold (αRep) at SP1-NC cleavage site disturbs the function of HIV-1 protease.
    Hadpech S; Peerakam N; Chupradit K; Tayapiwatana C
    Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32519747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.