These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7854192)

  • 1. Analysis of human immunodeficiency virus type 1 protease activity in eukaryotic and bacterial cells.
    Kaplan AH; Manchester M; Everitt L; Swanstrom R
    Methods Enzymol; 1994; 241():58-69. PubMed ID: 7854192
    [No Abstract]   [Full Text] [Related]  

  • 2. Expression systems for retroviral proteases.
    Stebbins J; Debouck C
    Methods Enzymol; 1994; 241():3-16. PubMed ID: 7854184
    [No Abstract]   [Full Text] [Related]  

  • 3. Human immunodeficiency virus type 1 gag-protease fusion proteins are enzymatically active.
    Kotler M; Arad G; Hughes SH
    J Virol; 1992 Nov; 66(11):6781-3. PubMed ID: 1404618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation.
    Quillent C; Borman AM; Paulous S; Dauguet C; Clavel F
    Virology; 1996 May; 219(1):29-36. PubMed ID: 8623542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of retroviral Gag polyproteins: an in vitro approach.
    Carter C; Zybarth G
    Methods Enzymol; 1994; 241():227-53. PubMed ID: 7854180
    [No Abstract]   [Full Text] [Related]  

  • 7. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins.
    Wu X; Liu H; Xiao H; Kappes JC
    Virology; 1996 May; 219(1):307-13. PubMed ID: 8623547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of human immunodeficiency virus particles assembled from the gag precursor protein requires in situ processing by gag-pol protease.
    Ross EK; Fuerst TR; Orenstein JM; O'Neill T; Martin MA; Venkatesan S
    AIDS Res Hum Retroviruses; 1991 May; 7(5):475-83. PubMed ID: 1873082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity.
    Rosé JR; Babé LM; Craik CS
    J Virol; 1995 May; 69(5):2751-8. PubMed ID: 7535864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli.
    Strickler JE; Gorniak J; Dayton B; Meek T; Moore M; Magaard V; Malinowski J; Debouck C
    Proteins; 1989; 6(2):139-54. PubMed ID: 2695927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant.
    Moody MD; Pettit SC; Shao W; Everitt L; Loeb DD; Hutchison CA; Swanstrom R
    Virology; 1995 Mar; 207(2):475-85. PubMed ID: 7886951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host strain selection for bacterial expression of toxic proteins.
    Chen E
    Methods Enzymol; 1994; 241():29-46. PubMed ID: 7854183
    [No Abstract]   [Full Text] [Related]  

  • 13. A kinetic model for comparing proteolytic processing activity and inhibitor resistance potential of mutant HIV-1 proteases.
    Tang J; Hartsuck JA
    FEBS Lett; 1995 Jun; 367(2):112-6. PubMed ID: 7796905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of HIV-1 pol is critical for Pol polyprotein processing.
    Chang YY; Yu SL; Syu WJ
    J Biomed Sci; 1999; 6(5):333-41. PubMed ID: 10494040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity of retroviral proteases: an analysis of viral and nonviral protein substrates.
    Tomasselli AG; Heinrikson RL
    Methods Enzymol; 1994; 241():279-301. PubMed ID: 7854182
    [No Abstract]   [Full Text] [Related]  

  • 16. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain.
    Accola MA; Strack B; Göttlinger HG
    J Virol; 2000 Jun; 74(12):5395-402. PubMed ID: 10823843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of human immunodeficiency virus type 1 containing HERV-K protease.
    Padow M; Lai L; Fisher RJ; Zhou YC; Wu X; Kappes JC; Towler EM
    AIDS Res Hum Retroviruses; 2000 Dec; 16(18):1973-80. PubMed ID: 11153080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional RT and IN incorporated into HIV-1 particles independently of the Gag/Pol precursor protein.
    Wu X; Liu H; Xiao H; Conway JA; Hunter E; Kappes JC
    EMBO J; 1997 Aug; 16(16):5113-22. PubMed ID: 9305652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitutions at the P2' site of gag p17-p24 affect cleavage efficiency by HIV-1 protease.
    Margolin N; Heath W; Osborne E; Lai M; Vlahos C
    Biochem Biophys Res Commun; 1990 Mar; 167(2):554-60. PubMed ID: 2182016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking of human immunodeficiency virus type-1 virion autolysis by autologous p2(gag) peptide.
    Misumi S; Morikawa Y; Tomonaga M; Ohkuma K; Takamune N; Shoji S
    J Biochem; 2004 Mar; 135(3):447-53. PubMed ID: 15113844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.