These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 7855446)
1. Simultaneous preparation of rabbit intestinal brush border and basolateral membrane vesicles. Stein J; Milovic V; Gerhard R; Caspary WF Res Exp Med (Berl); 1994; 194(5):305-12. PubMed ID: 7855446 [TBL] [Abstract][Full Text] [Related]
2. The simultaneous preparation of basolateral and brush-border membrane vesicles from guinea-pig intestinal epithelium, and the determination of the orientation of the basolateral vesicles. Del Castillo JR; Robinson JW Biochim Biophys Acta; 1982 May; 688(1):45-56. PubMed ID: 7093280 [TBL] [Abstract][Full Text] [Related]
3. Basolateral taurine transport system in reptilian renal cells. Benyajati S; Bay SM Am J Physiol; 1994 Mar; 266(3 Pt 2):F439-49. PubMed ID: 8160793 [TBL] [Abstract][Full Text] [Related]
4. Techniques for isolation of brush-border and basolateral membrane vesicles from dog kidney cortex. Hilden SA; Johns CA; Guggino WB; Madias NE Biochim Biophys Acta; 1989 Jul; 983(1):77-81. PubMed ID: 2758052 [TBL] [Abstract][Full Text] [Related]
5. Succinate and citrate transport in renal basolateral and brush-border membranes. Wright SH; Wunz TM Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous preparation of basolateral and brush-border membrane vesicles from sea bass intestinal epithelium. Drai P; Albertini-Berhaut J; Lafaurie M; Sudaka P; Giudicelli J Biochim Biophys Acta; 1990 Mar; 1022(3):251-9. PubMed ID: 2156552 [TBL] [Abstract][Full Text] [Related]
7. Differential permeabilities of rat renal brush-border and basolateral membrane vesicles. Lipkowitz MS; Abramson RG Am J Physiol; 1989 Jan; 256(1 Pt 2):F18-28. PubMed ID: 2912163 [TBL] [Abstract][Full Text] [Related]
8. Transport of tetraethylammonium by rabbit renal brush-border and basolateral membrane vesicles. Wright SH; Wunz TM Am J Physiol; 1987 Nov; 253(5 Pt 2):F1040-50. PubMed ID: 3688235 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous isolation and characterization of brush border and basolateral membrane vesicles from bovine small intestine. Wilson JW; Webb KE J Anim Sci; 1990 Feb; 68(2):583-90. PubMed ID: 2312442 [TBL] [Abstract][Full Text] [Related]
10. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport. Debiec H; Cross HS; Peterlik M J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047 [TBL] [Abstract][Full Text] [Related]
11. Calcium uptake by brush-border and basolateral membrane vesicles in chick duodenum. Takito J; Shinki T; Sasaki T; Suda T Am J Physiol; 1990 Jan; 258(1 Pt 1):G16-23. PubMed ID: 2154121 [TBL] [Abstract][Full Text] [Related]
12. Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction. Boumendil-Podevin EF; Podevin RA Biochim Biophys Acta; 1983 Oct; 735(1):86-94. PubMed ID: 6313056 [TBL] [Abstract][Full Text] [Related]
14. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles. Kim YK; Jung JS; Lee SH Can J Physiol Pharmacol; 1992 Jan; 70(1):106-12. PubMed ID: 1581843 [TBL] [Abstract][Full Text] [Related]
15. Transport of divalent transition-metal ions is lost in small-intestinal tissue of b/b Belgrade rats. Knöpfel M; Zhao L; Garrick MD Biochemistry; 2005 Mar; 44(9):3454-65. PubMed ID: 15736955 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneity of brush-border-membrane vesicles from rat small intestine prepared by a precipitation method using Mg/EGTA. Stieger B; Murer H Eur J Biochem; 1983 Sep; 135(1):95-101. PubMed ID: 6411469 [TBL] [Abstract][Full Text] [Related]
17. Effect of the somatostatin analogue SMS 201-995 on ATP-dependent calcium transport of basolateral vesicles from human duodenum. Stoll R; Stern H; Schmidt H; Ruppin H; Domschke W Scand J Gastroenterol; 1987 Dec; 22(10):1200-4. PubMed ID: 2893447 [TBL] [Abstract][Full Text] [Related]
18. Glucose and fructose uptake by Limulus polyphemus hepatopancreatic brush border and basolateral membrane vesicles: evidence for Na+-dependent sugar transport activity. Sterling KM; Ahearn GA J Comp Physiol B; 2011 May; 181(4):467-75. PubMed ID: 21184084 [TBL] [Abstract][Full Text] [Related]