These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 7855588)
21. Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock. Anderson SL; Somers DE; Millar AJ; Hanson K; Chory J; Kay SA Plant Cell; 1997 Oct; 9(10):1727-43. PubMed ID: 9368413 [TBL] [Abstract][Full Text] [Related]
22. Conditional circadian regulation of PHYTOCHROME A gene expression. Hall A; Kozma-Bognár L; Tóth R; Nagy F; Millar AJ Plant Physiol; 2001 Dec; 127(4):1808-18. PubMed ID: 11743124 [TBL] [Abstract][Full Text] [Related]
23. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Perales M; Más P Plant Cell; 2007 Jul; 19(7):2111-23. PubMed ID: 17616736 [TBL] [Abstract][Full Text] [Related]
24. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Meierhoff K; Felder S; Nakamura T; Bechtold N; Schuster G Plant Cell; 2003 Jun; 15(6):1480-95. PubMed ID: 12782738 [TBL] [Abstract][Full Text] [Related]
25. The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. James AB; Monreal JA; Nimmo GA; Kelly CL; Herzyk P; Jenkins GI; Nimmo HG Science; 2008 Dec; 322(5909):1832-5. PubMed ID: 19095940 [TBL] [Abstract][Full Text] [Related]
26. Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter. Thum KE; Kim M; Christopher DA; Mullet JE Plant Cell; 2001 Dec; 13(12):2747-60. PubMed ID: 11752385 [TBL] [Abstract][Full Text] [Related]
27. A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Funk C; Vermaas W Biochemistry; 1999 Jul; 38(29):9397-404. PubMed ID: 10413515 [TBL] [Abstract][Full Text] [Related]
28. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Sandonà D; Croce R; Pagano A; Crimi M; Bassi R Biochim Biophys Acta; 1998 Jun; 1365(1-2):207-14. PubMed ID: 9693736 [TBL] [Abstract][Full Text] [Related]
29. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Jarillo JA; Capel J; Tang RH; Yang HQ; Alonso JM; Ecker JR; Cashmore AR Nature; 2001 Mar; 410(6827):487-90. PubMed ID: 11260718 [TBL] [Abstract][Full Text] [Related]
30. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. Meurer J; Plücken H; Kowallik KV; Westhoff P EMBO J; 1998 Sep; 17(18):5286-97. PubMed ID: 9736608 [TBL] [Abstract][Full Text] [Related]
31. Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Ruban AV; Wentworth M; Yakushevska AE; Andersson J; Lee PJ; Keegstra W; Dekker JP; Boekema EJ; Jansson S; Horton P Nature; 2003 Feb; 421(6923):648-52. PubMed ID: 12571599 [TBL] [Abstract][Full Text] [Related]
32. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Green RM; Tobin EM Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4176-9. PubMed ID: 10097183 [TBL] [Abstract][Full Text] [Related]
33. Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Andersson J; Walters RG; Horton P; Jansson S Plant Cell; 2001 May; 13(5):1193-204. PubMed ID: 11340191 [TBL] [Abstract][Full Text] [Related]
34. Characterization of plant circadian rhythms by employing Arabidopsis cultured cells with bioluminescence reporters. Nakamichi N; Ito S; Oyama T; Yamashino T; Kondo T; Mizuno T Plant Cell Physiol; 2004 Jan; 45(1):57-67. PubMed ID: 14749486 [TBL] [Abstract][Full Text] [Related]
35. Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Härtel H; Lokstein H; Dörmann P; Grimm B; Benning C Plant Physiol; 1997 Nov; 115(3):1175-84. PubMed ID: 9390443 [TBL] [Abstract][Full Text] [Related]
37. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Moya I; Silvestri M; Vallon O; Cinque G; Bassi R Biochemistry; 2001 Oct; 40(42):12552-61. PubMed ID: 11601979 [TBL] [Abstract][Full Text] [Related]
38. Characterization of transcriptional oscillation of an Arabidopsis homolog of PnC401 related to photoperiodic induction of flowering in Pharbitis nil. Oguchi T; Sage-Ono K; Kamada H; Ono M Plant Cell Physiol; 2004 Feb; 45(2):232-5. PubMed ID: 14988494 [TBL] [Abstract][Full Text] [Related]
39. PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis. Fristedt R; Herdean A; Blaby-Haas CE; Mamedov F; Merchant SS; Last RL; Lundin B Plant Physiol; 2015 Feb; 167(2):481-92. PubMed ID: 25511433 [TBL] [Abstract][Full Text] [Related]
40. Expression of tobacco genes for light-harvesting chlorophyll a/b binding proteins of photosystem II is controlled by two circadian oscillators in a developmentally regulated fashion. Kolar C; Adám E; Schäfer E; Nagy F Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2174-8. PubMed ID: 7892242 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]