These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 7856513)
1. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables. Hewett P Am Ind Hyg Assoc J; 1995 Feb; 56(2):128-35. PubMed ID: 7856513 [TBL] [Abstract][Full Text] [Related]
2. Estimation of regional pulmonary deposition and exposure for fumes from SMAW and GMAW mild and stainless steel consumables. Hewett P Am Ind Hyg Assoc J; 1995 Feb; 56(2):136-42. PubMed ID: 7856514 [TBL] [Abstract][Full Text] [Related]
3. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace. Keane M; Siert A; Stone S; Chen BT J Occup Environ Hyg; 2016; 13(1):1-8. PubMed ID: 26267301 [TBL] [Abstract][Full Text] [Related]
4. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes. Berlinger B; Náray M; Sajó I; Záray G Ann Occup Hyg; 2009 Jun; 53(4):333-40. PubMed ID: 19318590 [TBL] [Abstract][Full Text] [Related]
5. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace. Keane MJ; Siert A; Chen BT; Stone SG Ann Occup Hyg; 2014 May; 58(4):403-12. PubMed ID: 24515891 [TBL] [Abstract][Full Text] [Related]
6. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Antonini JM; Roberts JR; Stone S; Chen BT; Schwegler-Berry D; Chapman R; Zeidler-Erdely PC; Andrews RN; Frazer DG Arch Toxicol; 2011 May; 85(5):487-98. PubMed ID: 20924559 [TBL] [Abstract][Full Text] [Related]
7. [Assessment of occupational exposure of welders based on determination of fumes and their components produced during stainless steel welding]. Stanisławska M; Janasik B; Trzcinka-Ochocka M Med Pr; 2011; 62(4):359-68. PubMed ID: 21995105 [TBL] [Abstract][Full Text] [Related]
8. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type. Keane M; Stone S; Chen B; Slaven J; Schwegler-Berry D; Antonini J J Environ Monit; 2009 Feb; 11(2):418-24. PubMed ID: 19212602 [TBL] [Abstract][Full Text] [Related]
9. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive. Topham N; Wang J; Kalivoda M; Huang J; Yu KM; Hsu YM; Wu CY; Oh S; Cho K; Paulson K Ann Occup Hyg; 2012 Mar; 56(2):233-41. PubMed ID: 22104317 [TBL] [Abstract][Full Text] [Related]
10. Changes in blood manganese concentration and MRI t1 relaxation time during 180 days of stainless steel welding-fume exposure in cynomolgus monkeys. Sung JH; Kim CY; Yang SO; Khang HS; Cheong HK; Lee JS; Song CW; Park JD; Han JH; Chung YH; Choi BS; Kwon IH; Cho MH; Yu IJ Inhal Toxicol; 2007 Jan; 19(1):47-55. PubMed ID: 17127642 [TBL] [Abstract][Full Text] [Related]
11. An evaluation of welding processes to reduce hexavalent chromium exposures and reduce costs by using better welding techniques. Keane MJ Environ Health Insights; 2014; 8(Suppl 1):47-50. PubMed ID: 25574138 [TBL] [Abstract][Full Text] [Related]
12. Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice. Falcone LM; Erdely A; Kodali V; Salmen R; Battelli LA; Dodd T; McKinney W; Stone S; Donlin M; Leonard HD; Cumpston JL; Cumpston JB; Andrews RN; Kashon ML; Antonini JM; Zeidler-Erdely PC Toxicology; 2018 Nov; 409():24-32. PubMed ID: 30055299 [TBL] [Abstract][Full Text] [Related]
13. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes. Keane M; Siert A; Stone S; Chen B; Slaven J; Cumpston A; Antonini J Weld J; 2012 Sep; 91(9):241s-246s. PubMed ID: 26690276 [TBL] [Abstract][Full Text] [Related]
14. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel. Bertram J; Brand P; Schettgen T; Lenz K; Purrio E; Reisgen U; Kraus T Ann Occup Hyg; 2015 May; 59(4):467-80. PubMed ID: 25512666 [TBL] [Abstract][Full Text] [Related]
15. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species. Keane M; Stone S; Chen B J Environ Monit; 2010 May; 12(5):1133-40. PubMed ID: 21491680 [TBL] [Abstract][Full Text] [Related]
16. Pulmonary responses to welding fumes: role of metal constituents. Antonini JM; Taylor MD; Zimmer AT; Roberts JR J Toxicol Environ Health A; 2004 Feb; 67(3):233-49. PubMed ID: 14681078 [TBL] [Abstract][Full Text] [Related]
17. Effect of welding fume solubility on lung macrophage viability and function in vitro. Antonini JM; Lawryk NJ; Murthy GG; Brain JD J Toxicol Environ Health A; 1999 Nov; 58(6):343-63. PubMed ID: 10580758 [TBL] [Abstract][Full Text] [Related]
18. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals. Cena LG; Chisholm WP; Keane MJ; Chen BT J Occup Environ Hyg; 2015; 12(10):721-8. PubMed ID: 25985454 [TBL] [Abstract][Full Text] [Related]
19. Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding-stainless steel fume: Iron as a primary mediator versus chromium and nickel. Falcone LM; Erdely A; Salmen R; Keane M; Battelli L; Kodali V; Bowers L; Stefaniak AB; Kashon ML; Antonini JM; Zeidler-Erdely PC PLoS One; 2018; 13(12):e0209413. PubMed ID: 30586399 [TBL] [Abstract][Full Text] [Related]
20. Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Antonini JM; Roberts JR; Chapman RS; Soukup JM; Ghio AJ; Sriram K Inhal Toxicol; 2010 Aug; 22(10):805-16. PubMed ID: 20560776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]