BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7856876)

  • 1. Quantitative electrophoretic analysis of proteins labeled with monobromobimane.
    O'Keefe DO
    Anal Biochem; 1994 Oct; 222(1):86-94. PubMed ID: 7856876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining fluorescence detection and mass spectrometric analysis for comprehensive and quantitative analysis of redox-sensitive cysteines in native membrane proteins.
    Petrotchenko EV; Pasek D; Elms P; Dokholyan NV; Meissner G; Borchers CH
    Anal Chem; 2006 Dec; 78(23):7959-66. PubMed ID: 17134128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a reversed-phase fluorescence HPLC method for determination of bucillamine in human plasma using pre-column derivatization with monobromobimane.
    Lee KC; Chun YG; Kim I; Shin BS; Park ES; Yoo SD; Youn YS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(22):2130-4. PubMed ID: 19546034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins.
    Fan TW; Lane AN; Higashi RM
    Phytochem Anal; 2004; 15(3):175-83. PubMed ID: 15202602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional polyacrylamide gel electrophoresis of proteins labeled with the fluorophore monobromobimane prior to first-dimensional isoelectric focusing: imaging of the fluorescent protein spot patterns using a cooled charge-coupled device.
    Urwin VE; Jackson P
    Anal Biochem; 1993 Feb; 209(1):57-62. PubMed ID: 8465962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization.
    Alhama J; Romero-Ruiz A; López-Barea J
    J Chromatogr A; 2006 Feb; 1107(1-2):52-8. PubMed ID: 16359685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of neuronal growth inhibitory factor (metallothionein-3) in polyacrylamide gels and by Western blot analysis.
    Meloni G; Knipp M; Vasák M
    J Biochem Biophys Methods; 2005 Jul; 64(1):76-81. PubMed ID: 15982745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling. Studies of T4 lysozyme using the fluorescent probe monobromobimane.
    Mansoor SE; McHaourab HS; Farrens DL
    Biochemistry; 1999 Dec; 38(49):16383-93. PubMed ID: 10587464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syn-9,10-dioxabimane.
    Vogel F; Lumper L
    Biochem J; 1983 Oct; 215(1):159-66. PubMed ID: 6414464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of H2S in vivo and in vitro by the monobromobimane method.
    Shen X; Kolluru GK; Yuan S; Kevil CG
    Methods Enzymol; 2015; 554():31-45. PubMed ID: 25725514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the intracellular protein thiol distribution of hepatocytes using monobromobimane derivatisation of intact cells and isolated subcellular fractions.
    Cotgreave IA; Weis M; Berggren M; Sandy MS; Moldéus PW
    J Biochem Biophys Methods; 1988 Aug; 16(4):247-54. PubMed ID: 3221035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three different fluorescent visualization strategies for detecting Escherichia coli ATP synthase subunits after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Berggren KN; Chernokalskaya E; Lopez MF; Beechem JM; Patton WF
    Proteomics; 2001 Jan; 1(1):54-65. PubMed ID: 11680898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The covalent attachment of multiple fluorophores to DNA containing phosphorothioate diesters results in highly sensitive detection of single-stranded DNA.
    Conway NE; McLaughlin LW
    Bioconjug Chem; 1991; 2(6):452-7. PubMed ID: 1805943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics by fluorescent labeling of cysteine residues using a set of two cyanine-based or three rhodamine-based dyes.
    Volke D; Hoffmann R
    Electrophoresis; 2008 Nov; 29(22):4516-26. PubMed ID: 19035404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction and fluorescent labeling of cyst(e)ine-containing proteins for subsequent structural analyses.
    Kirley TL
    Anal Biochem; 1989 Aug; 180(2):231-6. PubMed ID: 2554752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood.
    Wintner EA; Deckwerth TL; Langston W; Bengtsson A; Leviten D; Hill P; Insko MA; Dumpit R; VandenEkart E; Toombs CF; Szabo C
    Br J Pharmacol; 2010 Jun; 160(4):941-57. PubMed ID: 20590590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-reactive molecule with dual-emission-enhancement property for specific prestaining of cysteine containing proteins in SDS-PAGE.
    Yu Y; Li J; Chen S; Hong Y; Ng KM; Luo KQ; Tang BZ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4613-6. PubMed ID: 23721624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient site-specific labeling of proteins via cysteines.
    Kim Y; Ho SO; Gassman NR; Korlann Y; Landorf EV; Collart FR; Weiss S
    Bioconjug Chem; 2008 Mar; 19(3):786-91. PubMed ID: 18275130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimane fluorescent labels. Characterization of the bimane labeling of human hemoglobin.
    Kosower NS; Newton GL; Kosower EM; Ranney HM
    Biochim Biophys Acta; 1980 Apr; 622(2):201-9. PubMed ID: 7378449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accessibility of hepatocyte protein thiols to monobromobimane.
    Weis M; Cotgreave IC; Moore GA; Norbeck K; Moldéus P
    Biochim Biophys Acta; 1993 Mar; 1176(1-2):13-9. PubMed ID: 8452870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.