These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 7856892)

  • 1. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed?
    Stone JG; Young WL; Smith CR; Solomon RA; Wald A; Ostapkovich N; Shrebnick DB
    Anesthesiology; 1995 Feb; 82(2):344-51. PubMed ID: 7856892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Afterdrop after hypothermic cardiopulmonary bypass: the value of tympanic membrane temperature monitoring.
    Pujol A; Fusciardi J; Ingrand P; Baudouin D; Le Guen AF; Menu P
    J Cardiothorac Vasc Anesth; 1996 Apr; 10(3):336-41. PubMed ID: 8725413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep hypothermia and circulatory arrest for surgery of complex intracranial aneurysms.
    Aebert H; Brawanski A; Philipp A; Behr R; Ullrich OW; Keyl C; Birnbaum DE
    Eur J Cardiothorac Surg; 1998 Mar; 13(3):223-9. PubMed ID: 9628370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do standard monitoring sites affect true brain temperature when hyperthermia is rapidly induced and reversed.
    Eshel GM; Safar P
    Aviat Space Environ Med; 1999 Dec; 70(12):1193-6. PubMed ID: 10596773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of temperatures measured at standard monitoring sites as an index of brain temperature during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction.
    Akata T; Setoguchi H; Shirozu K; Yoshino J
    J Thorac Cardiovasc Surg; 2007 Jun; 133(6):1559-65. PubMed ID: 17532957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of core temperature measurement in deep hypothermic circulatory arrest.
    Camboni D; Philipp A; Schebesch KM; Schmid C
    Interact Cardiovasc Thorac Surg; 2008 Oct; 7(5):922-4. PubMed ID: 18658167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in body temperature during profound hypothermic cardiopulmonary bypass in adult patients undergoing aortic arch reconstruction.
    Akata T; Yamaura K; Kandabashi T; Sadamatsu S; Takahashi S
    J Anesth; 2004; 18(2):73-81. PubMed ID: 15127253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profound hypothermia (less than 10 degrees C) compared with deep hypothermia (15 degrees C) improves neurologic outcome in dogs after two hours' circulatory arrest induced to enable resuscitative surgery.
    Tisherman SA; Safar P; Radovsky A; Peitzman A; Marrone G; Kuboyama K; Weinrauch V
    J Trauma; 1991 Aug; 31(8):1051-61; discussion 1061-2. PubMed ID: 1875431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures.
    Mezrow CK; Midulla PS; Sadeghi AM; Gandsas A; Wang W; Dapunt OE; Zappulla R; Griepp RB
    J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1006-19. PubMed ID: 8159021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature monitoring during cardiopulmonary bypass--do we undercool or overheat the brain?
    Kaukuntla H; Harrington D; Bilkoo I; Clutton-Brock T; Jones T; Bonser RS
    Eur J Cardiothorac Surg; 2004 Sep; 26(3):580-5. PubMed ID: 15302054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jugular bulb temperature compared with non-invasive temperatures and cerebral arteriovenous oxygen saturation differences during open heart surgery.
    Sandström K; Nilsson K; Andréasson S; Larsson LE
    Paediatr Anaesth; 1999; 9(2):123-8. PubMed ID: 10189652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous jugular venous versus nasopharyngeal temperature monitoring during hypothermic cardiopulmonary bypass for cardiac surgery.
    Grocott HP; Newman MF; Croughwell ND; White WD; Lowry E; Reves JG
    J Clin Anesth; 1997 Jun; 9(4):312-6. PubMed ID: 9195355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.
    Rodriguez RA; Edmonds HL; Auden SM; Austin EH
    Can J Anaesth; 1999 Sep; 46(9):832-9. PubMed ID: 10490150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of brain temperatures for safe circulatory arrest during cardiovascular operation.
    Coselli JS; Crawford ES; Beall AC; Mizrahi EM; Hess KR; Patel VM
    Ann Thorac Surg; 1988 Jun; 45(6):638-42. PubMed ID: 3377576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingertip temperature during cardiopulmonary bypass.
    Johnson J; Desai JB; Ponte J
    Perfusion; 1997 Mar; 12(2):120-6. PubMed ID: 9160363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs.
    Kim WG; Lim C; Moon HJ; Kim YJ
    Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective convective brain cooling during hypothermic cardiopulmonary bypass in dogs.
    Wass CT; Waggoner JR; Cable DG; Schaff HV; Schroeder DR; Lanier WL
    Ann Thorac Surg; 1998 Dec; 66(6):2008-14. PubMed ID: 9930485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core temperature measurement in therapeutic hypothermia according to different phases: comparison of bladder, rectal, and tympanic versus pulmonary artery methods.
    Shin J; Kim J; Song K; Kwak Y
    Resuscitation; 2013 Jun; 84(6):810-7. PubMed ID: 23306812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducing Brain Cooling Without Core Temperature Reduction in Pigs Using a Novel Nasopharyngeal Method: An Effectiveness and Safety Study.
    de Paiva BLC; Bor-Seng-Shu E; Silva E; Barreto ÍBM; de Lima Oliveira M; Ferreira RES; Cavalcanti AB; Teixeira MJ
    Neurocrit Care; 2020 Apr; 32(2):564-574. PubMed ID: 31317319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.