These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7857265)

  • 1. Improvement of thermal stability of subtilisin J by changing the primary autolysis site.
    Bae KH; Jang JS; Park KS; Lee SH; Byun SM
    Biochem Biophys Res Commun; 1995 Feb; 207(1):20-4. PubMed ID: 7857265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability.
    Jang JS; Bae KH; Byun SM
    Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: crystallization and site-directed mutagenesis.
    Koyama T; Obata S; Osabe M; Saito K; Takeshita A; Nishino T; Ogura K
    Acta Biochim Pol; 1994; 41(3):281-92. PubMed ID: 7856399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of proline substitutions on stability and kinetic properties of a cold adapted subtilase.
    Arnórsdóttir J; Sigtryggsdóttir AR; Thorbjarnardóttir SH; Kristjánsson MM
    J Biochem; 2009 Mar; 145(3):325-9. PubMed ID: 19074503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive selection dictates the choice between kinetic and thermodynamic protein folding and stability in subtilases.
    Subbian E; Yabuta Y; Shinde U
    Biochemistry; 2004 Nov; 43(45):14348-60. PubMed ID: 15533039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236.
    Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG
    J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of subtilisin BPN': role of the pro-sequence.
    Eder J; Rheinnecker M; Fersht AR
    J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease.
    Takagi H; Takahashi T; Momose H; Inouye M; Maeda Y; Matsuzawa H; Ohta T
    J Biol Chem; 1990 Apr; 265(12):6874-8. PubMed ID: 2108962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis.
    Jaouadi B; Aghajari N; Haser R; Bejar S
    Biochimie; 2010 Apr; 92(4):360-9. PubMed ID: 20096326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions.
    Liang X; Bian Y; Tang XF; Xiao G; Tang B
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):999-1006. PubMed ID: 20306186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The active site of phosphorylating glyceraldehyde-3-phosphate dehydrogenase is not designed to increase the nucleophilicity of a serine residue.
    Boschi-Muller S; Branlant G
    Arch Biochem Biophys; 1999 Mar; 363(2):259-66. PubMed ID: 10068447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of human triosephosphate isomerase by improvement of the stability of individual alpha-helices in dimeric as well as monomeric forms of the protein.
    Mainfroid V; Mande SC; Hol WG; Martial JA; Goraj K
    Biochemistry; 1996 Apr; 35(13):4110-7. PubMed ID: 8672446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases.
    Eijsink VG; Vriend G; van der Vinne B; Hazes B; van den Burg B; Venema G
    Proteins; 1992 Oct; 14(2):224-36. PubMed ID: 1409570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme.
    Hwang GY; Kuo LY; Tsai MR; Yang SL; Lin LL
    Antonie Van Leeuwenhoek; 2005 May; 87(4):355-9. PubMed ID: 15928987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of protease Q against autolysis and in sodium dodecyl sulfate and urea solutions.
    Han XQ; Damodaran S
    Biochem Biophys Res Commun; 1997 Nov; 240(3):839-43. PubMed ID: 9398655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.