These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7857399)

  • 1. Photosynthesis. Many chlorophylls make light work.
    Hunter CN; Artymiuk PJ; van Amerongen H
    Curr Biol; 1994 Apr; 4(4):344-6. PubMed ID: 7857399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography.
    Kühlbrandt W; Wang DN
    Nature; 1991 Mar; 350(6314):130-4. PubMed ID: 2005962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional effects of structural changes in photosystem II as measured by chlorophyll fluorescence kinetics.
    Vermaas WF
    Methods Cell Biol; 1995; 50():15-30. PubMed ID: 8531791
    [No Abstract]   [Full Text] [Related]  

  • 4. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic model of plant light-harvesting complex by electron crystallography.
    Kühlbrandt W; Wang DN; Fujiyoshi Y
    Nature; 1994 Feb; 367(6464):614-21. PubMed ID: 8107845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll transition dipole moment orientations and pathways for flow of excitation energy among the chlorophylls of the major plant antenna, LHCII.
    Iseri E; Gülen D
    Eur Biophys J; 2001 Sep; 30(5):344-53. PubMed ID: 11592691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific effects of gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the character of disturbances in vivo using high-order derivative spectrophotometry.
    Saakov VS
    Dokl Biochem Biophys; 2002; 387():313-9. PubMed ID: 12577611
    [No Abstract]   [Full Text] [Related]  

  • 8. Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium.
    Laible PD; Zipfel W; Owens TG
    Biophys J; 1994 Mar; 66(3 Pt 1):844-60. PubMed ID: 8011917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: a new approach to detect strong excitonic chlorophyll a/b coupling.
    Leupold D; Teuchner K; Ehlert J; Irrgang KD; Renger G; Lokstein H
    Biophys J; 2002 Mar; 82(3):1580-5. PubMed ID: 11867470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer among CP29 chlorophylls: calculated Förster rates and experimental transient absorption at room temperature.
    Cinque G; Croce R; Holzwarth A; Bassi R
    Biophys J; 2000 Oct; 79(4):1706-17. PubMed ID: 11023879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination.
    Vredenberg WJ
    Biophys J; 2000 Jul; 79(1):26-38. PubMed ID: 10866935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae.
    Damjanović A; Ritz T; Schulten K
    Biophys J; 2000 Oct; 79(4):1695-705. PubMed ID: 11023878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants.
    Barzda V; Vengris M; Valkunas L; van Grondelle R; van Amerongen H
    Biochemistry; 2000 Aug; 39(34):10468-77. PubMed ID: 10956037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.
    Jordan P; Fromme P; Witt HT; Klukas O; Saenger W; Krauss N
    Nature; 2001 Jun; 411(6840):909-17. PubMed ID: 11418848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of the diastereotopic ligation of magnesium atoms of chlorophylls in Photosystem I.
    Balaban TS; Fromme P; Holzwarth AR; Krauss N; Prokhorenko VI
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):197-207. PubMed ID: 12460677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I.
    Vasil'ev S; Bruce D
    Plant Cell; 2004 Nov; 16(11):3059-68. PubMed ID: 15486105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity.
    Lawson T; Oxborough K; Morison JI; Baker NR
    Plant Physiol; 2002 Jan; 128(1):52-62. PubMed ID: 11788752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution electron crystallography of light-harvesting chlorophyll a/b-protein complex in three different media.
    Wang DN; Kühlbrandt W
    J Mol Biol; 1991 Feb; 217(4):691-9. PubMed ID: 2005619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re: Feild TS, et al. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. [2001] Plant Physiol 127:566-574.
    Beevers H
    Plant Physiol; 2002 Mar; 128(3):783. PubMed ID: 11915842
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.