These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7858123)

  • 1. Membrane stress increases cation permeability in red cells.
    Johnson RM
    Biophys J; 1994 Nov; 67(5):1876-81. PubMed ID: 7858123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss.
    Johnson RM; Gannon SA
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C746-51. PubMed ID: 2240192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.
    Parker KH; Winlove CP
    Biophys J; 1999 Dec; 77(6):3096-107. PubMed ID: 10585931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exaggerated cation leak from oxygenated sickle red blood cells during deformation: evidence for a unique leak pathway.
    Sugihara T; Hebbel RP
    Blood; 1992 Nov; 80(9):2374-8. PubMed ID: 1421408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional changes in the membrane and membrane skeleton of red blood cells induced by peroxynitrite.
    Starodubtseva MN; Tattersall AL; Kuznetsova TG; Yegorenkov NI; Ellory JC
    Bioelectrochemistry; 2008 Aug; 73(2):155-62. PubMed ID: 18339585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible deformation-dependent erythrocyte cation leak. Extreme sensitivity conferred by minimal peroxidation.
    Hebbel RP; Mohandas N
    Biophys J; 1991 Sep; 60(3):712-5. PubMed ID: 1932555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma and erythrocyte cations and permeability of the erythrocyte membrane to cations in essential hypertension.
    Aderounmu AF; Salako LA
    Afr J Med Med Sci; 1979; 8(1-2):45-9. PubMed ID: 122331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium as a tool for studying calcium-dependent cation permeability of the human red blood cell membrane.
    Skulskii IA; Glasunov VV; Manninen V
    Gen Physiol Biophys; 1991 Dec; 10(6):549-60. PubMed ID: 1724971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion permeability and erythrocyte swelling.
    Vitvitsky VM; Frolova EV; Martinov MV; Komarova SV; Ataullakhanov FI
    Bioelectrochemistry; 2000 Dec; 52(2):169-77. PubMed ID: 11129240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling the shape of the skeleton in the intact red cell.
    Khodadad JK; Waugh RE; Podolski JL; Josephs R; Steck TL
    Biophys J; 1996 Feb; 70(2):1036-44. PubMed ID: 8789122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkali ion transport of primycin modified erythrocytes.
    Blaskó K; Györgyi S
    Acta Biol Med Ger; 1981; 40(4-5):465-9. PubMed ID: 7315092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high hydrostatic pressure on 'passive' monovalent cation transport in human red cells.
    Hall AC; Ellory JC
    J Membr Biol; 1986; 94(1):1-17. PubMed ID: 3806656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The erythrocyte as a physical system. The kinetics of transmembrane oxygen transport].
    Fok MV; Zaritskiĭ AR; Prokopenko GA; Grachev VI
    Zh Obshch Biol; 1994; 55(4-5):583-612. PubMed ID: 7975888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method to study shape recovery of red blood cells using multiple optical trapping.
    Bronkhorst PJ; Streekstra GJ; Grimbergen J; Nijhof EJ; Sixma JJ; Brakenhoff GJ
    Biophys J; 1995 Nov; 69(5):1666-73. PubMed ID: 8580310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.
    Discher DE; Boal DH; Boey SK
    Biophys J; 1998 Sep; 75(3):1584-97. PubMed ID: 9726959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent ionophoric effects of red blood cell deformation.
    Vincenzi FF; Cambareri JJ
    Prog Clin Biol Res; 1985; 195():213-25. PubMed ID: 2414782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.
    Forsyth AM; Braunmüller S; Wan J; Franke T; Stone HA
    Microvasc Res; 2012 May; 83(3):347-51. PubMed ID: 22349292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild spherocytosis and altered red cell ion transport in protein 4. 2-null mice.
    Peters LL; Jindel HK; Gwynn B; Korsgren C; John KM; Lux SE; Mohandas N; Cohen CM; Cho MR; Golan DE; Brugnara C
    J Clin Invest; 1999 Jun; 103(11):1527-37. PubMed ID: 10359562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.