These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 7858581)
21. [Mechanotransduction in bone]. Zhang S; Wu XY; Li YH; Xie LQ Space Med Med Eng (Beijing); 2001 Dec; 14(6):465-8. PubMed ID: 11887901 [TBL] [Abstract][Full Text] [Related]
22. Vitamin D receptor alleles and bone physiology. White CP; Morrison NA; Gardiner EM; Eisman JA J Cell Biochem; 1994 Nov; 56(3):307-14. PubMed ID: 7876323 [TBL] [Abstract][Full Text] [Related]
23. [Human bone system in microgravity: review of research data, hypotheses and predictability of musculoskeletal system state in extended (exploration) missions]. Oganov VS; Bogomolov VV Aviakosm Ekolog Med; 2009; 43(1):3-12. PubMed ID: 19462774 [TBL] [Abstract][Full Text] [Related]
24. [Studies of the aging of the skeleton in laboratory animals]. Schlettwein-Gsell D Praxis; 1967 Sep; 56(37):1238-42. PubMed ID: 5633075 [No Abstract] [Full Text] [Related]
25. Artificial gravity. Scott WB Aviat Week Space Technol; 2005 Apr; 162(17):62-4. PubMed ID: 15852559 [TBL] [Abstract][Full Text] [Related]
27. Response and adaptation of beagle dogs to hypergravity. Oyama J Life Sci Space Res; 1975; 13():11-7. PubMed ID: 11913416 [TBL] [Abstract][Full Text] [Related]
28. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture. Christiansen P APMIS Suppl; 2001; (102):1-52. PubMed ID: 11419022 [TBL] [Abstract][Full Text] [Related]
29. Assessment of the in vivo adaptive response to mechanical loading. Saxon LK; Lanyon LE Methods Mol Biol; 2008; 455():307-22. PubMed ID: 18463827 [TBL] [Abstract][Full Text] [Related]
30. [Prophylaxis of the unfavorable shifts in mineral turnover in bones during extended exposure to the conditions reproducing the physiological effects of microgravity]. Morukov BV Aviakosm Ekolog Med; 2003; 37(2):45-51. PubMed ID: 12722425 [TBL] [Abstract][Full Text] [Related]
31. Microgravity: the immune response and bone. Zayzafoon M; Meyers VE; McDonald JM Immunol Rev; 2005 Dec; 208():267-80. PubMed ID: 16313354 [TBL] [Abstract][Full Text] [Related]
32. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Huiskes R; Ruimerman R; van Lenthe GH; Janssen JD Nature; 2000 Jun; 405(6787):704-6. PubMed ID: 10864330 [TBL] [Abstract][Full Text] [Related]
33. Morphological criteria of adaptation of the osseous system to increased physical loading. Sudzilovski PV Folia Morphol (Praha); 1981; 29(3):209-12. PubMed ID: 7274845 [No Abstract] [Full Text] [Related]
35. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans. Gray NM; Kainec K; Madar S; Tomko L; Wolfe S Anat Rec (Hoboken); 2007 Jun; 290(6):638-53. PubMed ID: 17516430 [TBL] [Abstract][Full Text] [Related]
36. Fatigue microdamage as an essential element of bone mechanics and biology. Martin RB Calcif Tissue Int; 2003 Aug; 73(2):101-7. PubMed ID: 14565590 [TBL] [Abstract][Full Text] [Related]
37. Microgravity and bone cell mechanosensitivity. Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126 [TBL] [Abstract][Full Text] [Related]
38. [Nutrition, Life style and skeleton]. Lamberg-Allardt C; Suominen H Duodecim; 1996; 112(22):2095-105. PubMed ID: 10605215 [No Abstract] [Full Text] [Related]
39. Describing force-induced bone growth and adaptation by a mathematical model. Maldonado S; Findeisen R; Allgöwer F J Musculoskelet Neuronal Interact; 2008; 8(1):15-7. PubMed ID: 18398254 [TBL] [Abstract][Full Text] [Related]
40. Age-related fragility fracture: insights from the natural homeostatic system in the skeleton. Sugiyama T; Kono Y; Sekiguchi K; Kim YT; Oda H Arch Osteoporos; 2015; 10():45. PubMed ID: 26628422 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]