BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7858891)

  • 21. Signalling pathways in bradykinin- and nitric oxide-induced hypotension in the normotensive rat; role of K+-channels.
    Berg T; Koteng O
    Br J Pharmacol; 1997 Jul; 121(6):1113-20. PubMed ID: 9249246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potassium channels are not involved in vasopressin-induced vasodilation in the rat lung.
    Eichinger MR; Russ RD; Walker BR
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H491-5. PubMed ID: 8141349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bradykinin, lemakalim and sodium nitroprusside relax the mouse trachea in vitro by different mechanisms.
    Li L; Vaali K; Paakkari I; Vapaatalo H
    Life Sci; 1997; 61(7):PL67-73. PubMed ID: 9252250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal transduction pathways involved in kinin B(2) receptor-mediated vasodilation in the rat isolated perfused kidney.
    Bagaté K; Grima M; Imbs JL; Jong WD; Helwig JJ; Barthelmebs M
    Br J Pharmacol; 2001 Apr; 132(8):1735-42. PubMed ID: 11309245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels.
    Cabell F; Weiss DS; Price JM
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1455-60. PubMed ID: 7943391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bradykinin mediation of Ca(2+)-activated K+ channels regulates coronary blood flow in ischemic myocardium.
    Node K; Kitakaze M; Kosaka H; Minamino T; Hori M
    Circulation; 1997 Mar; 95(6):1560-7. PubMed ID: 9118526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endothelium-dependent and BRL 34915-induced vasodilatation in rat isolated perfused mesenteric arteries: role of G-proteins, K+ and calcium channels.
    Adeagbo AS; Malik KU
    Br J Pharmacol; 1990 Jul; 100(3):427-34. PubMed ID: 2167732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries.
    Larach DR; Schuler HG
    J Pharmacol Exp Ther; 1993 Oct; 267(1):72-81. PubMed ID: 8229789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP-channels.
    Liu Q; Flavahan NA
    Br J Pharmacol; 1997 Feb; 120(4):728-34. PubMed ID: 9051315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels.
    Jackson WF; König A; Dambacher T; Busse R
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H238-43. PubMed ID: 7679257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity to endothelium-dependent and -independent vasoactive substances is maintained in coronary resistance vessels of the failing hamster heart.
    Véronneau M; Tanguay M; Fontaine E; Jasmin G; Dumont L
    Cardiovasc Res; 1997 Mar; 33(3):623-30. PubMed ID: 9093532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vascular effects of arachidonic acid in the rat perfused heart. Role of the endothelium, cyclooxygenase, cytochrome P450, and K(+) channels.
    Qiu Y; Quilley J
    J Lipid Res; 1999 Dec; 40(12):2177-84. PubMed ID: 10588943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery.
    Illiano S; Nagao T; Vanhoutte PM
    Br J Pharmacol; 1992 Oct; 107(2):387-92. PubMed ID: 1358391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of K+ channels to arachidonic acid-induced endothelium-dependent vasodilation in rat isolated perfused mesenteric arteries.
    Adeagbo AS; Malik KU
    J Pharmacol Exp Ther; 1991 Aug; 258(2):452-8. PubMed ID: 1650826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collateral response to activation of potassium channels in vivo.
    Lamping KG
    Basic Res Cardiol; 1998 Apr; 93(2):136-42. PubMed ID: 9601581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta.
    Hutcheson IR; Griffith TM
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H590-6. PubMed ID: 7511348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Davis SC; Högestätt ED
    Br J Pharmacol; 1996 Jul; 118(5):1147-52. PubMed ID: 8818337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of bradykinin in the rat isolated perfused heart: role of kinin receptors and endothelium-derived relaxing factor.
    Baydoun AR; Woodward B
    Br J Pharmacol; 1991 Jul; 103(3):1829-33. PubMed ID: 1657268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of oxygen tension on flow-induced vasodilation in porcine coronary resistance arterioles.
    Jimenez AH; Tanner MA; Caldwell WM; Myers PR
    Microvasc Res; 1996 May; 51(3):365-77. PubMed ID: 8992234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.