These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7859089)

  • 1. Spontaneous activity of first- and second-order neurons in the frog olfactory system.
    Rospars JP; Lánský P; Vaillant J; Duchamp-Viret P; Duchamp A
    Brain Res; 1994 Oct; 662(1-2):31-44. PubMed ID: 7859089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons.
    Desmaisons D; Vincent JD; Lledo PM
    J Neurosci; 1999 Dec; 19(24):10727-37. PubMed ID: 10594056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
    Chen WR; Shen GY; Shepherd GM; Hines ML; Midtgaard J
    J Neurophysiol; 2002 Nov; 88(5):2755-64. PubMed ID: 12424310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational framework for temporal sharpening of stimulus input in the olfactory system.
    Zak JD
    J Neurophysiol; 2016 Apr; 115(4):1749-51. PubMed ID: 26334019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taurine action on mitral cell activity in the frog olfactory bulb in vivo.
    Chaput MA; Palouzier-Paulignan B; Delaleu JC; Duchamp-Viret P
    Chem Senses; 2004 Jan; 29(1):83-91. PubMed ID: 14752043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical mechanisms of odor processing in olfactory bulb mitral cells.
    Rubin DB; Cleland TA
    J Neurophysiol; 2006 Aug; 96(2):555-68. PubMed ID: 16707721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli.
    Schoppa NE; Westbrook GL
    Nat Neurosci; 2002 Nov; 5(11):1194-202. PubMed ID: 12379859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study.
    Duchamp-Viret P; Coronas V; Delaleu JC; Moyse E; Duchamp A
    Neuroscience; 1997 Jul; 79(1):203-16. PubMed ID: 9178876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge properties of mitral/tufted cells in the olfactory bulb of cats.
    Motokizawa F; Ogawa Y
    Brain Res; 1997 Jul; 763(2):285-7. PubMed ID: 9296574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals.
    Duchamp-Viret P; Kostal L; Chaput M; Lánsky P; Rospars JP
    J Neurobiol; 2005 Nov; 65(2):97-114. PubMed ID: 16114031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of inhibition in the rat olfactory bulb external plexiform layer.
    Ezeh PI; Wellis DP; Scott JW
    J Neurophysiol; 1993 Jul; 70(1):263-74. PubMed ID: 8395579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.
    Egaña JI; Aylwin ML; Maldonado PE
    Neuroscience; 2005; 134(3):1069-80. PubMed ID: 15994017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral Status Influences the Dependence of Odorant-Induced Change in Firing on Prestimulus Firing Rate.
    Li A; Guthman EM; Doucette WT; Restrepo D
    J Neurosci; 2017 Feb; 37(7):1835-1852. PubMed ID: 28093474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse incomplete representations: a potential role of olfactory granule cells.
    Koulakov AA; Rinberg D
    Neuron; 2011 Oct; 72(1):124-36. PubMed ID: 21982374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA(B)-mediated action in the frog olfactory bulb makes odor responses more salient.
    Duchamp-Viret P; Delaleu JC; Duchamp A
    Neuroscience; 2000; 97(4):771-7. PubMed ID: 10842023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous recordings from two physiologically different types of relay neurons, mitral cells and ruffed cells, in the olfactory bulb of goldfish.
    Zippel HP; Reschke C; Korff V
    Cell Mol Biol (Noisy-le-grand); 1999 May; 45(3):327-37. PubMed ID: 10386789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.