These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7859383)

  • 1. The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction.
    Spach MS; Heidlage JF
    Circ Res; 1995 Mar; 76(3):366-80. PubMed ID: 7859383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth.
    Spach MS; Heidlage JF; Dolber PC; Barr RC
    Circ Res; 2000 Feb; 86(3):302-11. PubMed ID: 10679482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias.
    Spach MS; Boineau JP
    Pacing Clin Electrophysiol; 1997 Feb; 20(2 Pt 2):397-413. PubMed ID: 9058844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in anisotropic conduction caused by remodeling cell size and the cellular distribution of gap junctions and Na(+) channels.
    Spach MS; Heidlage JF; Dolber PC; Barr RC
    J Electrocardiol; 2001; 34 Suppl():69-76. PubMed ID: 11781939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular Vmax reflects both membrane properties and the load presented by adjoining cells.
    Spach MS; Heidlage JF; Darken ER; Hofer E; Raines KH; Starmer CF
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1855-63. PubMed ID: 1481909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gap junction distribution on impulse propagation in a monolayer of myocytes: a model study.
    Hubbard ML; Ying W; Henriquez CS
    Europace; 2007 Nov; 9 Suppl 6():vi20-8. PubMed ID: 17959689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse propagation in an expanded PSpice model for cardiac muscle with gap-junction ion channels.
    Ramasamy L; Sperelakis N
    Biomed Eng Online; 2006 Jul; 5():46. PubMed ID: 16875501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cell geometry on conduction velocity in a subcellular model of myocardium.
    Toure A; Cabo C
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2107-14. PubMed ID: 20501344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
    Rudy Y; Quan WL
    Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A map of the heart: gap junctions, connexin diversity and retroviral studies of conduction myocyte lineage.
    Gourdie RG
    Clin Sci (Lond); 1995 Mar; 88(3):257-62. PubMed ID: 7736693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lessons learned about slow discontinuous conduction from models of impulse propagation.
    Rudy Y
    J Electrocardiol; 2005 Oct; 38(4 Suppl):52-4. PubMed ID: 16226074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction.
    Tsumoto K; Ashihara T; Haraguchi R; Nakazawa K; Kurachi Y
    Biophys J; 2011 Feb; 100(3):554-563. PubMed ID: 21281569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.
    Veeraraghavan R; Lin J; Keener JP; Gourdie R; Poelzing S
    Pflugers Arch; 2016 Oct; 468(10):1651-61. PubMed ID: 27510622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic modulation of fast inward sodium current in canine myocardium. Syncytial preparations versus isolated myocytes.
    Gintant GA; Liu DW
    Circ Res; 1992 Apr; 70(4):844-50. PubMed ID: 1312913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.
    Saffitz JE; Kanter HL; Green KG; Tolley TK; Beyer EC
    Circ Res; 1994 Jun; 74(6):1065-70. PubMed ID: 8187276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern.
    Litchenberg WH; Norman LW; Holwell AK; Martin KL; Hewett KW; Gourdie RG
    Cardiovasc Res; 2000 Jan; 45(2):379-87. PubMed ID: 10728358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell size and communication: role in structural and electrical development and remodeling of the heart.
    Spach MS; Heidlage JF; Barr RC; Dolber PC
    Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.