BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7859385)

  • 1. Effects of hypoxanthine-xanthine oxidase on Ca2+ stores and protein synthesis in human endothelial cells.
    Dreher D; Jornot L; Junod AF
    Circ Res; 1995 Mar; 76(3):388-95. PubMed ID: 7859385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthine oxidase inhibits transmembrane signal transduction in vascular endothelial cells.
    Wesson DE; Elliott SJ
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1197-207. PubMed ID: 7932172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells.
    Dreher D; Junod AF
    J Cell Physiol; 1995 Jan; 162(1):147-53. PubMed ID: 7814447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient Ca2+ changes in endothelial cells induced by low doses of reactive oxygen species: role of hydrogen peroxide.
    Volk T; Hensel M; Kox WJ
    Mol Cell Biochem; 1997 Jun; 171(1-2):11-21. PubMed ID: 9201690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic Ca2+ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2+ channels.
    Az-ma T; Saeki N; Yuge O
    Br J Pharmacol; 1999 Mar; 126(6):1462-70. PubMed ID: 10217541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenine nucleotide depletion from endothelial cells exposed to xanthine oxidase.
    Aalto TK; Raivio KO
    Am J Physiol; 1990 Dec; 259(6 Pt 1):C883-8. PubMed ID: 2260639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of superoxide anions on endothelial Ca2+ signaling pathways.
    Graier WF; Hoebel BG; Paltauf-Doburzynska J; Kostner GM
    Arterioscler Thromb Vasc Biol; 1998 Sep; 18(9):1470-9. PubMed ID: 9743237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxanthine-xanthine oxidase-related defect in polypeptide chain initiation by endothelium.
    Jornot L; Junod AF
    J Appl Physiol (1985); 1989 Jan; 66(1):450-7. PubMed ID: 2917950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide anion increases intracellular free calcium in human myometrial cells.
    Masumoto N; Tasaka K; Miyake A; Tanizawa O
    J Biol Chem; 1990 Dec; 265(36):22533-6. PubMed ID: 2176220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells.
    Cabello OA; Schilling WP
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):357-66. PubMed ID: 8240234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refilling state of internal Ca2+ stores is not the only intracellular signal stimulating Ca2+ influx in human endothelial cells.
    Iouzalen L; David-Dufilho M; Devynck MA
    Biochem Pharmacol; 1995 Mar; 49(7):893-9. PubMed ID: 7741761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The H2O2-generating enzyme, xanthine oxidase, decreases luminal Ca2+ content of the IP3-sensitive Ca2+ store in vascular endothelial cells.
    Wesson DE; Elliott SJ
    Microcirculation; 1995 Aug; 2(2):195-203. PubMed ID: 7497171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxanthine plus xanthine oxidase causes profound natriuresis without affecting renal blood flow autoregulation.
    Racasan S; Turkstra E; Joles JA; Koomans HA; Braam B
    Kidney Int; 2003 Jul; 64(1):226-31. PubMed ID: 12787413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species and calcium homeostasis in cultured human intestinal smooth muscle cells.
    Bielefeldt K; Whiteis CA; Sharma RV; Abboud FM; Conklin JL
    Am J Physiol; 1997 Jun; 272(6 Pt 1):G1439-50. PubMed ID: 9227480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen metabolites increase mitochondrial calcium in endothelial cells: implication of the Ca2+/Na+ exchanger.
    Jornot L; Maechler P; Wollheim CB; Junod AF
    J Cell Sci; 1999 Apr; 112 ( Pt 7)():1013-22. PubMed ID: 10198283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool.
    Dolor RJ; Hurwitz LM; Mirza Z; Strauss HC; Whorton AR
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C171-81. PubMed ID: 1531101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of reactive oxygen species on intracellular calcium in bovine tracheal epithelium: modulation by nitric oxide.
    Kanoh S; Kondo M; Tamaoki J; Kobayashi H; Motoyoshi K; Nagai A
    Exp Lung Res; 2000; 26(5):335-48. PubMed ID: 10914332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Ca2+ influx during mitosis: Ca2+ influx and depletion of intracellular Ca2+ stores are coupled in interphase but not mitosis.
    Preston SF; Sha'afi RI; Berlin RD
    Cell Regul; 1991 Nov; 2(11):915-25. PubMed ID: 1809398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells.
    Kwan CY; Takemura H; Obie JF; Thastrup O; Putney JW
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C1006-15. PubMed ID: 2360617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.