These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7859719)

  • 1. The validity of the Smoluchowski equation in electrophoretic studies of lipid membranes.
    Egorova EM
    Electrophoresis; 1994; 15(8-9):1125-31. PubMed ID: 7859719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles.
    Leroy P; Devau N; Revil A; Bizi M
    J Colloid Interface Sci; 2013 Nov; 410():81-93. PubMed ID: 24011560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrophoretic mobility of montmorillonite. Zeta potential and surface conductivity effects.
    Leroy P; Tournassat C; Bernard O; Devau N; Azaroual M
    J Colloid Interface Sci; 2015 Aug; 451():21-39. PubMed ID: 25875489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoluchowski equation and the colloidal charge reversal.
    Diehl A; Levin Y
    J Chem Phys; 2006 Aug; 125(5):054902. PubMed ID: 16942253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface conductivity on the apparent zeta potential of calcite.
    Li S; Leroy P; Heberling F; Devau N; Jougnot D; Chiaberge C
    J Colloid Interface Sci; 2016 Apr; 468():262-275. PubMed ID: 26852350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some problems of zeta potential determination in electrophoretic measurements on lipid membranes.
    Egorova EM; Dukhin AS; Svetlova IE
    Biochim Biophys Acta; 1992 Feb; 1104(1):102-10. PubMed ID: 1550836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles.
    Leroy P; Tournassat C; Bizi M
    J Colloid Interface Sci; 2011 Apr; 356(2):442-53. PubMed ID: 21316693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic radius coincides with the slip plane position in the electrokinetic behavior of lysozyme.
    Grisham DR; Nanda V
    Proteins; 2018 May; 86(5):515-523. PubMed ID: 29383755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.
    Das S; Chakraborty S
    Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.
    Eisenberg M; Gresalfi T; Riccio T; McLaughlin S
    Biochemistry; 1979 Nov; 18(23):5213-23. PubMed ID: 115493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes.
    Pasquale L; Winiski A; Oliva C; Vaio G; McLaughlin S
    J Gen Physiol; 1986 Dec; 88(6):697-718. PubMed ID: 3794637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relaxation effect as observed on lipid suspensions of low polydispersity.
    Egorova EM; Yakover LL; Svitova TF
    Biochim Biophys Acta; 1992 Aug; 1109(1):1-6. PubMed ID: 1504077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual electrophoretic mobilities of liposomes and acidic organelles displaying pH gradients across their membranes.
    Chen Y; Arriaga EA
    Langmuir; 2007 May; 23(10):5584-90. PubMed ID: 17402758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoresis of solid particles at large Peclet numbers.
    Mishchuk NA; Dukhin SS
    Electrophoresis; 2002 Jul; 23(13):2012-22. PubMed ID: 12210253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the outer membrane charge and softness of Thiobacillus ferrooxidans by the Ohshima's electrophoretic model of a "soft" particle.
    Skvarla J; Kupka D; Návesnáková Y; Skvarlová A
    Folia Microbiol (Praha); 2002; 47(3):218-24. PubMed ID: 12094728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent electrophoretic migration and separation of liposomes by capillary zone electrophoresis in electrolyte solutions of various ionic strengths.
    Radko SP; Stastna M; Chrambach A
    Anal Chem; 2000 Dec; 72(24):5955-60. PubMed ID: 11140762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dukhin-Deryaguin equation for the electrophoretic mobility in monovalent electrolytes with arbitrary ion mobilities.
    Egorova EM
    Electrophoresis; 1995 Jun; 16(6):905-10. PubMed ID: 7498135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields.
    Carrique F; Arroyo FJ; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):126-37. PubMed ID: 16290771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media.
    Crespy A; Bolève A; Revil A
    J Colloid Interface Sci; 2007 Jan; 305(1):188-94. PubMed ID: 17069826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.