These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 785977)

  • 1. Superoxide dismutases in photosynthetic organisms.
    Asada K; Kanematsu S; Takahashi M; Kona Y
    Adv Exp Med Biol; 1976; 74():551-64. PubMed ID: 785977
    [No Abstract]   [Full Text] [Related]  

  • 2. Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants.
    Jackson C; Dench J; Moore AL; Halliwell B; Foyer CH; Hall DO
    Eur J Biochem; 1978 Nov; 91(2):339-44. PubMed ID: 729573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble & membrane-bound superoxide dismutases in a blue-green algae (Spirulina)and spinach.
    Lumsden J; Hall DO
    Biochem Biophys Res Commun; 1974 May; 58(1):35-41. PubMed ID: 4364622
    [No Abstract]   [Full Text] [Related]  

  • 4. Chloroplast manganese and superoxide.
    Lumsden J; Hall DO
    Biochem Biophys Res Commun; 1975 May; 64(2):595-602. PubMed ID: 167752
    [No Abstract]   [Full Text] [Related]  

  • 5. The biogenesis and physiological function of chloroplast superoxide dismutases.
    Pilon M; Ravet K; Tapken W
    Biochim Biophys Acta; 2011 Aug; 1807(8):989-98. PubMed ID: 21078292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The site of manganese function in photosynthetic electron transport system.
    Ito M; Yamashita K; Nishi T; Konishi K; Shibata K
    Biochim Biophys Acta; 1969 Aug; 180(3):509-19. PubMed ID: 5810847
    [No Abstract]   [Full Text] [Related]  

  • 7. A two-step mechanism for the photosynthetic reduction of oxygen by ferredoxin.
    Allen JF
    Biochem Biophys Res Commun; 1975 Sep; 66(1):36-43. PubMed ID: 1164429
    [No Abstract]   [Full Text] [Related]  

  • 8. Light-dependent consumption of oxygen by Vicia faba chloroplasts.
    Ridley SM; Leech RM
    Arch Biochem Biophys; 1970 Aug; 139(2):351-60. PubMed ID: 4395967
    [No Abstract]   [Full Text] [Related]  

  • 9. A comparative study of photosynthetic electron transport in algal cells and spinach chloroplasts.
    Rurainski HJ; Randles J; Hoch GE
    Biochim Biophys Acta; 1970; 205(2):254-62. PubMed ID: 5420966
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of superoxide dismutase activity by dietary manganese.
    de Rosa G; Keen CL; Leach RM; Hurley LS
    J Nutr; 1980 Apr; 110(4):795-804. PubMed ID: 7365547
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of the superoxide free radical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophosphorylation.
    Elstner EF; Kramer R
    Biochim Biophys Acta; 1973 Sep; 314(3):340-53. PubMed ID: 4751235
    [No Abstract]   [Full Text] [Related]  

  • 12. Approaches for increasing photosynthetic efficiency.
    Tolbert NE
    Basic Life Sci; 1977; 9():355-68. PubMed ID: 921691
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of nigericin and valinomycin on CO2 fixation electron transport and P518 in intact spinach chloroplasts.
    Larkum AW; Boardman NK
    FEBS Lett; 1974 Mar; 40(1):229-32. PubMed ID: 4854767
    [No Abstract]   [Full Text] [Related]  

  • 14. Microbial superoxide dismutases.
    Hassan HM
    Adv Genet; 1989; 26():65-97. PubMed ID: 2554697
    [No Abstract]   [Full Text] [Related]  

  • 15. Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: Galdieria partita APX maintains the electron flux through the water-water cycle in transplastomic tobacco plants.
    Miyake C; Shinzaki Y; Nishioka M; Horiguchi S; Tomizawa K
    Plant Cell Physiol; 2006 Feb; 47(2):200-10. PubMed ID: 16338960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide and evolution.
    Fridovich I
    Horiz Biochem Biophys; 1974; 1():1-37. PubMed ID: 4377564
    [No Abstract]   [Full Text] [Related]  

  • 17. [Quantitative relationship between chlorophyll-b reaction, electron transport and phosphorylation during photosynthesis].
    Rumberg B; Siggel U
    Z Naturforsch B; 1968 Feb; 23(2):239-44. PubMed ID: 4385981
    [No Abstract]   [Full Text] [Related]  

  • 18. Chemical properties, distribution, and physiology of plant and algal carbonic anhydrases.
    Graham D; Reed ML; Patterson BD; Hockley DG; Dwyer MR
    Ann N Y Acad Sci; 1984; 429():222-37. PubMed ID: 6430163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 520-nm light-induced absorbance change in photosynthetic mutants of Scenedesmus.
    Pratt LH; Bishop NI
    Biochim Biophys Acta; 1968 Oct; 162(3):369-79. PubMed ID: 5680278
    [No Abstract]   [Full Text] [Related]  

  • 20. Superoxide reduction as a mechanism of ascorbate-stimulated oxygen uptake by isolated chloroplasts.
    Allen JF; Hall DO
    Biochem Biophys Res Commun; 1973 Jun; 52(3):856-62. PubMed ID: 4736324
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.