BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7859824)

  • 1. Blood-to-lens transport of reduced glutathione in an in situ perfused guinea-pig eye.
    Zlokovic BV; Mackic JB; McComb JG; Kaplowitz N; Weiss MH; Kannan R
    Exp Eye Res; 1994 Oct; 59(4):487-96. PubMed ID: 7859824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium.
    Mackic JB; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1997 Apr; 64(4):615-26. PubMed ID: 9227280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat.
    Stewart-DeHaan PJ; Dzialoszynski T; Trevithick JR
    Mol Vis; 1999 Dec; 5():37. PubMed ID: 10617774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of circulating reduced glutathione at the basolateral side of the anterior lens epithelium: physiologic importance and manipulations.
    Mackic JB; Jinagouda S; McComb JG; Weiss MH; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1996 Jan; 62(1):29-37. PubMed ID: 8674510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous nucleosides in the guinea-pig eye: analysis of transport and metabolites.
    Redzic ZB; Markovic ID; Vidovic VP; Vranic VP; Gasic JM; Duricic BM; Pokrajac M; Dordevic JB; Segal MB; Rakic LM
    Exp Eye Res; 1998 Mar; 66(3):315-25. PubMed ID: 9533859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ perfused guinea-pig eye model for blood-ocular transport studies: application to amino acids.
    Zlokovic BV; Mackic JB; McComb JG; Kannan R; Weiss MH
    Exp Eye Res; 1992 Mar; 54(3):471-7. PubMed ID: 1381681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in ascorbic acid transport into the lens of streptozotocin-induced diabetic rats and guinea pigs.
    DiMattio J
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2926-35. PubMed ID: 1388145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for transcapillary transport of reduced glutathione in vascular perfused guinea-pig brain.
    Zlokovic BV; Mackic JB; McComb JG; Weiss MH; Kaplowitz N; Kannan R
    Biochem Biophys Res Commun; 1994 May; 201(1):402-8. PubMed ID: 8198602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of a reduced glutathione transporter in the lens.
    Kannan R; Yi JR; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1785-92. PubMed ID: 7635653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes.
    Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig.
    DiMattio J
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2320-31. PubMed ID: 2807790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium.
    Reddy VN; Giblin FJ; Lin LR; Chakrapani B
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal transport of circulating glutathione in normal and galactosemic guinea pigs.
    Kannan R; Mackic JB; Zlokovic BV
    Cornea; 1999 May; 18(3):321-7. PubMed ID: 10336036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism.
    Yokoyama T; Sasaki H; Giblin FJ; Reddy VN
    Exp Eye Res; 1994 Feb; 58(2):207-18. PubMed ID: 8157113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid transport to lens epithelium in human aqueous humor.
    Wakabayashi Y; Kawahara J; Iwasaki T; Usui M
    Jpn J Ophthalmol; 1994; 38(4):400-6. PubMed ID: 7723209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of glutathione at blood-brain barrier of the rat: inhibition by glutathione analogs and age-dependence.
    Kannan R; Kuhlenkamp JF; Ookhtens M; Kaplowitz N
    J Pharmacol Exp Ther; 1992 Dec; 263(3):964-70. PubMed ID: 1469653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo entry of glucose analogs into lens and cornea of the rat.
    DiMattio J
    Invest Ophthalmol Vis Sci; 1984 Feb; 25(2):160-5. PubMed ID: 6698738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver and lens glutathione and cysteine regulation in galactose-fed guinea pigs.
    Kannan R; Fernández-Checa JC; García-Ruiz C; Mackic JB; Zlokovic BV
    Curr Eye Res; 1997 Apr; 16(4):365-71. PubMed ID: 9134326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione and lens epithelial function.
    Giblin FJ; Chakrapani B; Reddy VN
    Invest Ophthalmol; 1976 May; 15(5):381-93. PubMed ID: 131114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.