BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7860054)

  • 1. Human acute tubular necrosis: a lectin and immunohistochemical study.
    Nadasdy T; Laszik Z; Blick KE; Johnson DL; Burst-Singer K; Nast C; Cohen AH; Ormos J; Silva FG
    Hum Pathol; 1995 Feb; 26(2):230-9. PubMed ID: 7860054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubular atrophy in the end-stage kidney: a lectin and immunohistochemical study.
    Nadasdy T; Laszik Z; Blick KE; Johnson DL; Silva FG
    Hum Pathol; 1994 Jan; 25(1):22-8. PubMed ID: 7906246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary acute renal failure ("acute tubular necrosis") in the transplanted kidney: morphology and pathogenesis.
    Olsen S; Burdick JF; Keown PA; Wallace AC; Racusen LC; Solez K
    Medicine (Baltimore); 1989 May; 68(3):173-87. PubMed ID: 2654537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of cystic renal lesions. Lectin and immuno-histochemical study.
    Kovács J; Zilahy M; Gomba S
    Acta Chir Hung; 1997; 36(1-4):176-8. PubMed ID: 9408336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P53 protein is a reliable marker in identification of renal tubular injury.
    McLaren BK; Zhang PL; Herrera GA
    Appl Immunohistochem Mol Morphol; 2004 Sep; 12(3):225-9. PubMed ID: 15551735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell proliferation in the developing human kidney.
    Nadasdy T; Lajoie G; Laszik Z; Blick KE; Molnar-Nadasdy G; Silva FG
    Pediatr Dev Pathol; 1998; 1(1):49-55. PubMed ID: 10463271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperplasia, hypertrophy, and phenotypic alterations in the distal nephron after acute proximal tubular injury in the rat.
    Nouwen EJ; Verstrepen WA; Buyssens N; Zhu MQ; De Broe ME
    Lab Invest; 1994 Apr; 70(4):479-93. PubMed ID: 7909858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model.
    Solez K; Morel-Maroger L; Sraer JD
    Medicine (Baltimore); 1979 Sep; 58(5):362-76. PubMed ID: 481195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for extrarenal cells in the regeneration following acute renal failure.
    Gupta S; Verfaillie C; Chmielewski D; Kim Y; Rosenberg ME
    Kidney Int; 2002 Oct; 62(4):1285-90. PubMed ID: 12234298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferative activity of cyst epithelium in human renal cystic diseases.
    Nadasdy T; Laszik Z; Lajoie G; Blick KE; Wheeler DE; Silva FG
    J Am Soc Nephrol; 1995 Jan; 5(7):1462-8. PubMed ID: 7703384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration.
    Smeets B; Boor P; Dijkman H; Sharma SV; Jirak P; Mooren F; Berger K; Bornemann J; Gelman IH; Floege J; van der Vlag J; Wetzels JF; Moeller MJ
    J Pathol; 2013 Apr; 229(5):645-59. PubMed ID: 23124355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis.
    Yang L; Li X; Wang H
    Nephrol Dial Transplant; 2007 Feb; 22(2):445-56. PubMed ID: 17124284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nephronectin expression in nephrotoxic acute tubular necrosis.
    Cheng CW; Ka SM; Yang SM; Shui HA; Hung YW; Ho PC; Su YC; Chen A
    Nephrol Dial Transplant; 2008 Jan; 23(1):101-9. PubMed ID: 17984101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of polymeric Tamm-Horsfall protein in cast formation: oligosaccharide and tubular fluid ions.
    Wangsiripaisan A; Gengaro PE; Edelstein CL; Schrier RW
    Kidney Int; 2001 Mar; 59(3):932-40. PubMed ID: 11231348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of osteopontin in gentamicin-induced acute tubular necrosis and its recovery process.
    Xie Y; Nishi S; Iguchi S; Imai N; Sakatsume M; Saito A; Ikegame M; Iino N; Shimada H; Ueno M; Kawashima H; Arakawa M; Gejyo F
    Kidney Int; 2001 Mar; 59(3):959-74. PubMed ID: 11231351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical identification of tubular segments in percutaneous renal biopsies.
    Iványi B; Olsen TS
    Histochemistry; 1991; 95(4):351-6. PubMed ID: 1708751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology of ischemic acute renal failure, normal function, and cyclosporine toxicity in cyclosporine-treated renal allograft recipients.
    Solez K; Racusen LC; Marcussen N; Slatnik I; Keown P; Burdick JF; Olsen S
    Kidney Int; 1993 May; 43(5):1058-67. PubMed ID: 8510383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical and lectin dissection of the human nephron in health and disease.
    Silva FG; Nadasdy T; Laszik Z
    Arch Pathol Lab Med; 1993 Dec; 117(12):1233-9. PubMed ID: 8250694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubular dilatation in the repair process of ischaemic tubular necrosis.
    Shimizu A; Masuda Y; Ishizaki M; Sugisaki Y; Yamanaka N
    Virchows Arch; 1994; 425(3):281-90. PubMed ID: 7812514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered growth factor expression during toxic proximal tubular necrosis and regeneration.
    Verstrepen WA; Nouwen EJ; Yue XS; De Broe ME
    Kidney Int; 1993 Jun; 43(6):1267-79. PubMed ID: 8315941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.