These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7860308)

  • 1. Deposition patterns of molecular phase radon progeny (218Po) in lung bifurcations.
    Kinsara AA; Loyalka SK; Tompson RV; Miller WH; Holub RF
    Health Phys; 1995 Mar; 68(3):371-82. PubMed ID: 7860308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of local deposition patterns of inhaled radon decay products in human bronchial airway bifurcations.
    Balásházy I; Hofmann W
    Health Phys; 2000 Feb; 78(2):147-58. PubMed ID: 10647981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Radiation dose at bronchial bifurcations of smokers from indoor exposure to radon progeny.
    Martell EA
    Proc Natl Acad Sci U S A; 1983 Mar; 80(5):1285-9. PubMed ID: 6572389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.
    Al-Jundi J; Li WB; Abusini M; Tschiersch J; Hoeschen C; Oeh U
    J Environ Radioact; 2011 Jun; 102(6):574-80. PubMed ID: 21477902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced deposition of radon daughter nuclei in the vicinity of power frequency electromagnetic fields.
    Henshaw DL; Ross AN; Fews AP; Preece AW
    Int J Radiat Biol; 1996 Jan; 69(1):25-38. PubMed ID: 8601752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the effect of mucociliary clearance on the bronchial distribution of inhaled radon progenies and related cellular damage using a new deposition and clearance model for the lung.
    Farkas Á
    Radiat Environ Biophys; 2020 Nov; 59(4):651-661. PubMed ID: 32865689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous measurements of bronchial exposure induced by radon decay products during inhalation.
    Iwaoka K; Tokonami S; Yonehara H; Ishikawa T; Doi M; Kobayashi Y; Yatabe Y; Takahashi H; Yamada Y
    Rev Sci Instrum; 2007 Sep; 78(9):093301. PubMed ID: 17902947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deposition and spatial variation of thoron decay products in a thoron experimental house using the Direct Thoron Progeny Sensors.
    Mishra R; Joshi M; Meisenberg O; Gierl S; Prajith R; Kanse SD; Rout R; Sapra BK; Mayya YS; Tschiersch J
    J Radiol Prot; 2017 Jun; 37(2):379-389. PubMed ID: 28418936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Importance of studying exposure of the population to radon and its daughters].
    Jevtić M; Vesković M; Mirosavljev M; Bikit I; Conkić L
    Med Pregl; 2001; 54(3-4):140-5. PubMed ID: 11759205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radon progeny size distributions and enhanced deposition effects from high radon concentrations in an enclosed chamber.
    Leonard BE
    Radiat Prot Dosimetry; 2004; 108(4):331-43. PubMed ID: 15103063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling radon progeny concentration variations in thermal spas.
    Nikolopoulos D; Vogiannis E
    Sci Total Environ; 2007 Feb; 373(1):82-93. PubMed ID: 17188335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor dose conversion coefficients for radon progeny for different ambient environments.
    Yu KN; Wong BT; Law JY; Lau BM; Nikezic D
    Environ Sci Technol; 2001 Jun; 35(11):2136-40. PubMed ID: 11414010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry.
    Szoke I; Balásházy I; Farkas A; Hofmann W
    Radiat Prot Dosimetry; 2007; 127(1-4):68-72. PubMed ID: 17561519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The radon inverse dose rate effect and high-LET galactic hazards.
    Leonard BE
    Radiat Prot Dosimetry; 2005; 115(1-4):310-5. PubMed ID: 16381736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The degree of inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human respiratory tract.
    Füri P; Farkas Á; Madas BG; Hofmann W; Winkler-Heil R; Kudela G; Balásházy I
    Radiat Environ Biophys; 2020 Mar; 59(1):173-183. PubMed ID: 31587107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response to comments on 'Uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home' by J. W. Marsh et al.
    Birchall A; Marsh JW
    Radiat Prot Dosimetry; 2003; 104(2):177; author reply 178. PubMed ID: 12918796
    [No Abstract]   [Full Text] [Related]  

  • 17. Stochastic dosimetry model for radon progeny in the rat lung.
    Winkler-HeiI R; Hofmann W; Hussain M
    Radiat Prot Dosimetry; 2014 Jul; 160(1-3):104-7. PubMed ID: 24723184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comments on 'uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home.' J. W. Marsh et al. radiat. prot. dosim. 102(3), 229-248 (2002).
    Irlweck K
    Radiat Prot Dosimetry; 2003; 104(1):77. PubMed ID: 12862248
    [No Abstract]   [Full Text] [Related]  

  • 19. [Radon progeny as an experimental tool for dosimetry of nanoaerosols].
    Ruzer LS; Apte MG
    Radiats Biol Radioecol; 2009; 49(3):372-82. PubMed ID: 19637748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progeny enhanced deposition rates primarily from increased particle diffusivity at high radon concentrations.
    Leonard BE
    Health Phys; 2003 Oct; 85(4):476-84. PubMed ID: 13678289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.