These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7860586)

  • 1. Mechanism of cellulose synthesis in Agrobacterium tumefaciens.
    Matthysse AG; Thomas DL; White AR
    J Bacteriol; 1995 Feb; 177(4):1076-81. PubMed ID: 7860586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes required for cellulose synthesis in Agrobacterium tumefaciens.
    Matthysse AG; White S; Lightfoot R
    J Bacteriol; 1995 Feb; 177(4):1069-75. PubMed ID: 7860585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose synthesis by extracts of Acanthamoeba castellanii during encystment. Stimulation of the incorporation of radioactivity from UDP-(14C)glucose into alkali-soluble and insoluble beta-glucans by glucose 6-phosphate and related compounds.
    Potter JL; Weisman RA
    Biochim Biophys Acta; 1976 Mar; 428(1):240-52. PubMed ID: 1260020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediatry steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant.
    Swissa M; Aloni Y; Weinhouse H; Benizman M
    J Bacteriol; 1980 Sep; 143(3):1142-50. PubMed ID: 7410313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of cellulose precursors. The involvement of lipid-linked sugars.
    Hopp HE; Romero PA; Daleo GR; Pont Lezica R
    Eur J Biochem; 1978 Mar; 84(2):561-71. PubMed ID: 639803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens.
    Uttaro AD; Cangelosi GA; Geremia RA; Nester EW; Ugalde RA
    J Bacteriol; 1990 Mar; 172(3):1640-6. PubMed ID: 2307661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis in Agrobacterium tumefaciens.
    Barnhart DM; Su S; Farrand SK
    J Bacteriol; 2014 Mar; 196(6):1257-74. PubMed ID: 24443526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the role of residues around the active site tunnel towards generating a glucose-tolerant β-glucosidase from Agrobacterium tumefaciens 5A.
    Goswami S; Das S; Datta S
    Protein Eng Des Sel; 2017 Jul; 30(7):523-530. PubMed ID: 28873987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic beta-(1,2)-glucan synthesis in Rhizobiaceae: roles of the 319-kilodalton protein intermediate.
    Castro OA; Zorreguieta A; Ielmini V; Vega G; Ielpi L
    J Bacteriol; 1996 Oct; 178(20):6043-8. PubMed ID: 8830704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens.
    Wang Y; Kim SH; Natarajan R; Heindl JE; Bruger EL; Waters CM; Michael AJ; Fuqua C
    J Bacteriol; 2016 Oct; 198(19):2682-91. PubMed ID: 27402627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens.
    Amikam D; Benziman M
    J Bacteriol; 1989 Dec; 171(12):6649-55. PubMed ID: 2556370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of glucose-1-phosphate from UDP-glucose to lipid acceptors in plants.
    Romero PA; Lezica RP
    Acta Physiol Lat Am; 1976; 26(5):364-70. PubMed ID: 1052600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sitosterol-beta-glucoside as primer for cellulose synthesis in plants.
    Peng L; Kawagoe Y; Hogan P; Delmer D
    Science; 2002 Jan; 295(5552):147-50. PubMed ID: 11778054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sucrose synthase is an integral component of the cellulose synthesis machinery.
    Fujii S; Hayashi T; Mizuno K
    Plant Cell Physiol; 2010 Feb; 51(2):294-301. PubMed ID: 20056592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous mutation conferring the ability to catabolize mannopine in Agrobacterium tumefaciens.
    LaPointe G; Nautiyal CS; Chilton WS; Farrand SK; Dion P
    J Bacteriol; 1992 Apr; 174(8):2631-9. PubMed ID: 1556082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation.
    Semeniuk A; Sohlenkamp C; Duda K; Hölzl G
    J Biol Chem; 2014 Apr; 289(14):10104-14. PubMed ID: 24558041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosylation of phosphorylpolyisoprenol and sterol at the plasma membrane of soya-bean (Glycine max) protoplasts.
    Chadwick CM; Northcote DH
    Biochem J; 1980 Feb; 186(2):411-21. PubMed ID: 6445731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization.
    Saxena IM; Kudlicka K; Okuda K; Brown RM
    J Bacteriol; 1994 Sep; 176(18):5735-52. PubMed ID: 8083166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations.
    Finberg KE; Muth TR; Young SP; Maken JB; Heitritter SM; Binns AN; Banta LM
    J Bacteriol; 1995 Sep; 177(17):4881-9. PubMed ID: 7665464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010.
    Binns AN; Beaupré CE; Dale EM
    J Bacteriol; 1995 Sep; 177(17):4890-9. PubMed ID: 7665465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.