BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7860592)

  • 1. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis.
    Glaser P; Danchin A; Kunst F; Zuber P; Nakano MM
    J Bacteriol; 1995 Feb; 177(4):1112-5. PubMed ID: 7860592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth.
    Nakano MM; Dailly YP; Zuber P; Clark DP
    J Bacteriol; 1997 Nov; 179(21):6749-55. PubMed ID: 9352926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis.
    Ogawa K; Akagawa E; Yamane K; Sun ZW; LaCelle M; Zuber P; Nakano MM
    J Bacteriol; 1995 Mar; 177(5):1409-13. PubMed ID: 7868621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The narA locus of Synechococcus sp. strain PCC 7942 consists of a cluster of molybdopterin biosynthesis genes.
    Rubio LM; Flores E; Herrero A
    J Bacteriol; 1998 Mar; 180(5):1200-6. PubMed ID: 9495759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).
    Nakano MM; Zuber P
    Annu Rev Microbiol; 1998; 52():165-90. PubMed ID: 9891797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of moeB--part of the molybdenum cofactor biosynthesis gene cluster in Staphylococcus carnosus.
    Neubauer H; Pantel I; Götz F
    FEMS Microbiol Lett; 1998 Jul; 164(1):55-62. PubMed ID: 9675851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP.
    Chiang RC; Cavicchioli R; Gunsalus RP
    Mol Microbiol; 1997 Jun; 24(5):1049-60. PubMed ID: 9220011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate reductase activity and heterocyst suppression on nitrate in Anabaena sp. strain PCC 7120 require moeA.
    Ramaswamy KS; Endley S; Golden JW
    J Bacteriol; 1996 Jul; 178(13):3893-8. PubMed ID: 8682795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli.
    Hasona A; Ray RM; Shanmugam KT
    J Bacteriol; 1998 Mar; 180(6):1466-72. PubMed ID: 9515915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis.
    Johnson ME; Rajagopalan KV
    J Bacteriol; 1987 Jan; 169(1):117-25. PubMed ID: 2947896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdopterin guanine dinucleotide cofactor in Synechococcus sp. nitrate reductase: identification of mobA and isolation of a putative moeB gene.
    Rubio LM; Flores E; Herrero A
    FEBS Lett; 1999 Dec; 462(3):358-62. PubMed ID: 10622725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli.
    Palmer T; Vasishta A; Whitty PW; Boxer DH
    Eur J Biochem; 1994 Jun; 222(2):687-92. PubMed ID: 8020507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of two Arabidopsis cDNAs involved in early steps of molybdenum cofactor biosynthesis by functional complementation of Escherichia coli mutants.
    Hoff T; Schnorr KM; Meyer C; Caboche M
    J Biol Chem; 1995 Mar; 270(11):6100-7. PubMed ID: 7890743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the aegA locus of Escherichia coli: control of gene expression in response to anaerobiosis and nitrate.
    Cavicchioli R; Kolesnikow T; Chiang RC; Gunsalus RP
    J Bacteriol; 1996 Dec; 178(23):6968-74. PubMed ID: 8955321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system.
    Hoffmann T; Troup B; Szabo A; Hungerer C; Jahn D
    FEMS Microbiol Lett; 1995 Sep; 131(2):219-25. PubMed ID: 7557333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli.
    Schröder I; Wolin CD; Cavicchioli R; Gunsalus RP
    J Bacteriol; 1994 Aug; 176(16):4985-92. PubMed ID: 8051011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases.
    Fischer M; Alderson J; van Keulen G; White J; Sawers RG
    Microbiology (Reading); 2010 Oct; 156(Pt 10):3166-3179. PubMed ID: 20595262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
    Amy NK
    J Bacteriol; 1981 Oct; 148(1):274-82. PubMed ID: 7026535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE.
    Hoffmann T; Frankenberg N; Marino M; Jahn D
    J Bacteriol; 1998 Jan; 180(1):186-9. PubMed ID: 9422613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NarX and NarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarL.
    Cavicchioli R; Schröder I; Constanti M; Gunsalus RP
    J Bacteriol; 1995 May; 177(9):2416-24. PubMed ID: 7730273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.