These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7860600)

  • 1. An endo-N-acetyl-beta-D-glucosaminidase, acting on the di-N-acetylchitobiosyl part of N-linked glycans, is secreted during sporulation of Myxococcus xanthus.
    Barreaud JP; Bourgerie S; Julien R; Guespin-Michel JF; Karamanos Y
    J Bacteriol; 1995 Feb; 177(4):916-20. PubMed ID: 7860600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of an endo-N-acetyl-beta-D-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4.
    Bourgerie S; Karamanos Y; Grard T; Julien R
    J Bacteriol; 1994 Oct; 176(20):6170-4. PubMed ID: 7928985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretion kinetics of endo-N-acetyl-beta-D-glucosaminidase during vegetative growth of Myxococcus xanthus.
    Karamanos Y; Barreaud JP; Julien R
    Res Microbiol; 1996 May; 147(4):217-24. PubMed ID: 8763609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-knockout of putative endo-β-N-acetylglucosaminidase (ENGase) genes in Arabidopsis thaliana: loss of ENGase activity induced accumulation of high-mannose type free N-glycans bearing N,N'-acetylchitobiosyl unit.
    Kimura Y; Takeoka Y; Inoue M; Maeda M; Fujiyama K
    Biosci Biotechnol Biochem; 2011; 75(5):1019-21. PubMed ID: 21597164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of beta-lactamase influences the course of development in Myxococcus xanthus.
    O'Connor KA; Zusman DR
    J Bacteriol; 1999 Oct; 181(20):6319-31. PubMed ID: 10515921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Rajagopalan R; Kroos L
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264995
    [No Abstract]   [Full Text] [Related]  

  • 7. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation.
    Müller FD; Treuner-Lange A; Heider J; Huntley SM; Higgs PI
    BMC Genomics; 2010 Apr; 11():264. PubMed ID: 20420673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores.
    Kimura Y; Yamashita S; Mori Y; Kitajima Y; Takegawa K
    J Bacteriol; 2011 Oct; 193(20):5853-7. PubMed ID: 21840977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations that confer resistance to 2-deoxyglucose reduce the specific activity of hexokinase from Myxococcus xanthus.
    Youderian P; Lawes MC; Creighton C; Cook JC; Saier MH
    J Bacteriol; 1999 Apr; 181(7):2225-35. PubMed ID: 10094702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development.
    Laue BE; Gill RE
    J Bacteriol; 1995 Jul; 177(14):4089-96. PubMed ID: 7608083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral and Phospholipids of the Myxococcus xanthus Lipodome during Fruiting Body Formation and Germination.
    Ahrendt T; Wolff H; Bode HB
    Appl Environ Microbiol; 2015 Oct; 81(19):6538-47. PubMed ID: 26162876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-D-Allose inhibits fruiting body formation and sporulation in Myxococcus xanthus.
    Chavira M; Cao N; Le K; Riar T; Moradshahi N; McBride M; Lux R; Shi W
    J Bacteriol; 2007 Jan; 189(1):169-78. PubMed ID: 17056749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in two new loci that impair both extracellular protein production and development in Myxococcus xanthus.
    Petit F; Merah M; Monnier C; Guespin-Michel JF
    J Bacteriol; 1993 Jul; 175(13):4239-44. PubMed ID: 8320239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus.
    Skotnicka D; Smaldone GT; Petters T; Trampari E; Liang J; Kaever V; Malone JG; Singer M; Søgaard-Andersen L
    PLoS Genet; 2016 May; 12(5):e1006080. PubMed ID: 27214040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in the intracellular concentration of glycerol during development in Myxococcus xanthus.
    Frasch SC; Dworkin M
    FEMS Microbiol Lett; 1994 Oct; 122(3):321-5. PubMed ID: 7988874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of phase variation in the resistance of Myxococcus xanthus fruiting bodies to Caenorhabditis elegans predation.
    Dahl JL; Ulrich CH; Kroft TL
    J Bacteriol; 2011 Oct; 193(19):5081-9. PubMed ID: 21821771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A development-specific protein in Myxococcus xanthus is associated with the extracellular fibrils.
    Clemans DL; Chance CM; Dworkin M
    J Bacteriol; 1991 Nov; 173(21):6749-59. PubMed ID: 1718941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Clp/Hsp100 chaperone functions in Myxococcus xanthus sporulation and self-organization.
    Yan J; Garza AG; Bradley MD; Welch RD
    J Bacteriol; 2012 Apr; 194(7):1689-96. PubMed ID: 22287524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhpA, a tyrosine phosphatase of Myxococcus xanthus, is involved in the production of exopolysaccharide.
    Mori Y; Maeda M; Takegawa K; Kimura Y
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2546-2555. PubMed ID: 22859616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of glucosamine on lysis, glycerol formation, and sporulation in Myxococcus xanthus.
    Mueller C; Dworkin M
    J Bacteriol; 1991 Nov; 173(22):7164-75. PubMed ID: 1938915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.