BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7860630)

  • 1. Evidence for nonvectorial, retrograde transferrin trafficking in the early endosomes of HEp2 cells.
    Ghosh RN; Maxfield FR
    J Cell Biol; 1995 Feb; 128(4):549-61. PubMed ID: 7860630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of low density lipoprotein and transferrin endocytic sorting HEp2 cells using confocal microscopy.
    Ghosh RN; Gelman DL; Maxfield FR
    J Cell Sci; 1994 Aug; 107 ( Pt 8)():2177-89. PubMed ID: 7983176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome.
    Dunn KW; McGraw TE; Maxfield FR
    J Cell Biol; 1989 Dec; 109(6 Pt 2):3303-14. PubMed ID: 2600137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes.
    Dunn KW; Maxfield FR
    J Cell Biol; 1992 Apr; 117(2):301-10. PubMed ID: 1560027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling.
    Brown PS; Wang E; Aroeti B; Chapin SJ; Mostov KE; Dunn KW
    Traffic; 2000 Feb; 1(2):124-40. PubMed ID: 11208093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump.
    van Weert AW; Dunn KW; Geuze HJ; Maxfield FR; Stoorvogel W
    J Cell Biol; 1995 Aug; 130(4):821-34. PubMed ID: 7642700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two distinct kinds of tubular organelles involved in the rapid recycling and slow processing of endocytosed transferrin.
    Sakai T; Mizuno T; Miyamoto H; Kawasaki K
    Biochem Biophys Res Commun; 1998 Jan; 242(1):151-7. PubMed ID: 9439627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The End2 mutation in CHO cells slows the exit of transferrin receptors from the recycling compartment but bulk membrane recycling is unaffected.
    Presley JF; Mayor S; Dunn KW; Johnson LS; McGraw TE; Maxfield FR
    J Cell Biol; 1993 Sep; 122(6):1231-41. PubMed ID: 8376460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular fusion of sequentially formed endocytic compartments.
    Salzman NH; Maxfield FR
    J Cell Biol; 1988 Apr; 106(4):1083-91. PubMed ID: 3360848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferrin receptors and cation-independent mannose-6-phosphate receptors deliver their ligands to two distinct subpopulations of multivesicular endosomes.
    Woods JW; Goodhouse J; Farquhar MG
    Eur J Cell Biol; 1989 Oct; 50(1):132-43. PubMed ID: 2558886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerized transferrin receptors are selectively retained by a lumenal sorting signal in a long-lived endocytic recycling compartment.
    Marsh EW; Leopold PL; Jones NL; Maxfield FR
    J Cell Biol; 1995 Jun; 129(6):1509-22. PubMed ID: 7790351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process.
    Mayor S; Presley JF; Maxfield FR
    J Cell Biol; 1993 Jun; 121(6):1257-69. PubMed ID: 8509447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clathrin hub expression affects early endosome distribution with minimal impact on receptor sorting and recycling.
    Bennett EM; Lin SX; Towler MC; Maxfield FR; Brodsky FM
    Mol Biol Cell; 2001 Sep; 12(9):2790-9. PubMed ID: 11553717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relations between the intracellular pathways of the receptors for transferrin, asialoglycoprotein, and mannose 6-phosphate in human hepatoma cells.
    Stoorvogel W; Geuze HJ; Griffith JM; Schwartz AL; Strous GJ
    J Cell Biol; 1989 Jun; 108(6):2137-48. PubMed ID: 2544602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trafficking of the epidermal growth factor receptor and transferrin in three hepatocytic endosomal fractions.
    Jäckle S; Runquist EA; Miranda-Brady S; Havel RJ
    J Biol Chem; 1991 Jan; 266(3):1396-402. PubMed ID: 1671034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of transferrin in Caco-2 cells: a possible mechanism of intestinal transferrin absorption.
    Lim CJ; Norouziyan F; Shen WC
    J Control Release; 2007 Oct; 122(3):393-8. PubMed ID: 17586083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin dependence of polarized receptor recycling in Madin-Darby canine kidney cell endosomes.
    Sheff DR; Kroschewski R; Mellman I
    Mol Biol Cell; 2002 Jan; 13(1):262-75. PubMed ID: 11809838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coated endosomal vesicles: sorting and recycling compartment for transferrin in BHK cells.
    Eskelinen S; Kok JW; Sormunen R; Hoekstra D
    Eur J Cell Biol; 1991 Dec; 56(2):210-22. PubMed ID: 1802708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect lipoprotein follows a transferrin-like recycling pathway that is mediated by the insect LDL receptor homologue.
    Van Hoof D; Rodenburg KW; Van der Horst DJ
    J Cell Sci; 2002 Nov; 115(Pt 21):4001-12. PubMed ID: 12356906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.