BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7860698)

  • 21. Molecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydryls.
    Liu G; Pessah IN
    J Biol Chem; 1994 Dec; 269(52):33028-34. PubMed ID: 7806531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of triadin with histidine-rich Ca(2+)-binding protein at the triadic junction in skeletal muscle fibers.
    Sacchetto R; Turcato F; Damiani E; Margreth A
    J Muscle Res Cell Motil; 1999 May; 20(4):403-15. PubMed ID: 10531621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disulfide bonds, N-glycosylation and transmembrane topology of skeletal muscle triadin.
    Fan H; Brandt NR; Caswell AH
    Biochemistry; 1995 Nov; 34(45):14902-8. PubMed ID: 7578102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor).
    Grunwald R; Meissner G
    J Biol Chem; 1995 May; 270(19):11338-47. PubMed ID: 7744771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The 90-kDa junctional sarcoplasmic reticulum protein forms an integral part of a supramolecular triad complex in skeletal muscle.
    Froemming GR; Pette D; Ohlendieck K
    Biochem Biophys Res Commun; 1999 Aug; 261(3):603-9. PubMed ID: 10441473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin.
    Ohkura M; Furukawa K; Fujimori H; Kuruma A; Kawano S; Hiraoka M; Kuniyasu A; Nakayama H; Ohizumi Y
    Biochemistry; 1998 Sep; 37(37):12987-93. PubMed ID: 9737879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomerisation of Ca2+-regulatory membrane components involved in the excitation-contraction-relaxation cycle during postnatal development of rabbit skeletal muscle.
    Froemming GR; Ohlendieck K
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):226-38. PubMed ID: 9748594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor.
    Groh S; Marty I; Ottolia M; Prestipino G; Chapel A; Villaz M; Ronjat M
    J Biol Chem; 1999 Apr; 274(18):12278-83. PubMed ID: 10212196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical characterization and molecular cloning of cardiac triadin.
    Guo W; Jorgensen AO; Jones LR; Campbell KP
    J Biol Chem; 1996 Jan; 271(1):458-65. PubMed ID: 8550602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H; Takeshima H; Nishimura S; Takahashi M; Tanabe T; Flockerzi V; Hofmann F; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1995 Oct; 16(5):465-80. PubMed ID: 8567934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of two distinct proteins that are immunologically related to the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel.
    Brawley RM; Hosey MM
    J Biol Chem; 1992 Sep; 267(25):18218-23. PubMed ID: 1325462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle.
    Protasi F; Franzini-Armstrong C; Allen PD
    J Cell Biol; 1998 Feb; 140(4):831-42. PubMed ID: 9472035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads.
    Brandt NR; Caswell AH; Wen SR; Talvenheimo JA
    J Membr Biol; 1990 Feb; 113(3):237-51. PubMed ID: 2159517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells.
    Protasi F; Franzini-Armstrong C; Flucher BE
    J Cell Biol; 1997 May; 137(4):859-70. PubMed ID: 9151688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling.
    Meissner G; Lu X
    Biosci Rep; 1995 Oct; 15(5):399-408. PubMed ID: 8825041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple, fast, one-step method for the purification of the skeletal-muscle ryanodine receptor.
    Shoshan-Barmatz V; Zarka A
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):61-4. PubMed ID: 1637323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional expression of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum in COS-1 cells.
    Chen SR; Vaughan DM; Airey JA; Coronado R; MacLennan DH
    Biochemistry; 1993 Apr; 32(14):3743-53. PubMed ID: 8385488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence of atypical Ca2+ transients in triadin-binding deficient-RYR1 mutants.
    Lee EH; Song DW; Lee JM; Meissner G; Allen PD; Kim DH
    Biochem Biophys Res Commun; 2006 Dec; 351(4):909-14. PubMed ID: 17092484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and ultrastructural localization of a novel 90-kDa protein unique to skeletal muscle junctional sarcoplasmic reticulum.
    Guo W; Jorgensen AO; Campbell KP
    J Biol Chem; 1994 Nov; 269(45):28359-65. PubMed ID: 7961775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.